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CHAPTER I. INTRODUCTION AND HISTORICAL BACKGROUND 

The development of the theory and the numerical methods of mathe­

matical optimization continues to be of interest to a wide variety of 

scientific disciplines. The discovery of new areas of application and 

the need for solutions to more difficult problems have led to continuing 

efforts to develop moro powerful theories and solution techniques. Of 

particular interest to the engineer is the branch of optimization usually 

referred to as optimal control. Although the field has received much 

specialized attention in recent years, optimal control cannot properly be 

disassociated from the non-control branches of optimization such as linear 

programming, nonlinear programming, and the calculus of variations. To 

the contrary, these non-control branches of optimization theory have 

contributed heavily to the development of iterative techniques for 

solving the control problem. 

This dissertation treats a particular class of iteration techniques, 

the conjugate gradient methods. These techniques were originally 

developed for solving systems of linear algebraic equations, and have 

recently been extended and used to solve unconstrained optimal control 

problems. Several proposed modifications which attempt to make the 

conjugate gradient method applicable to problems with terminal state 

constraints are examined. 

The optimal control problem can be stated imprecisely as the problem 

of selecting from a specified set of functions that control function 

which minimizes a given functional and which satisfies specified 

differential and algebraic constraints involving the problem or state 
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variables. A more rigorous definition of the optimal control problem will 

be given in Chapter II. The necessary conditions for optimality of a 

control function have been derived by many authors including Berkovitz 

(7) whose work adapts the classical calculus of variations of Bliss (9) 

to the control problem. Similar necessary conditions have been derived 

from a geometric viewpoint by Pontryagin et £i. (62). The latter work 

has resulted in the celebrated maximum principle of optimal control.^ 

Although these necessary conditions rarely lead to an analytical determina­

tion of the optimal control, they form the theoretical foundation upon 

which the numerical solution techniques are built. 

The terms direct and indirect are often used to classify the many 

numerical techniques that have been proposed. Indirect methods are 

those that attempt to produce the optimal control by satisfying the 

necessary conditions for optimality obtained from the calculus of 

variations or from Pontryagin's maximum principle. In general, the 

application of these necessary conditions leads to a nonlinear two-point 

boundary value problem. As a result, most indirect methods are 

characterized by an iterative modification of either the boundary 

conditions or the differential equations. 

In contrast, direct methods are those that select successive trial 

control functions based on information obtained from the value of the 

functional and perhaps its variations for previous control choices. 

^Pontryagin's Principle is also referred to as the minimum principle 

by many authors. 
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These methods usually require the choice of an initial control function 

which is used to determine a direction of search in the space of allowable 

controls. The control change is the product of the direction of search 

and a scalar parameter called the stepsize. From the new control, a new 

direction of search is determined, and the process is repeated. The 

various direct methods differ principally in the means used to determine 

the successive directions of search and the magnitude of the control 

correction taken in those directions. 

A method of numerical optimization that is not easily classified as 

direct or indirect has been derived by Bellman (5,6). The method, known 

as dynamic programming, views the optimal control problem as a multi­

stage decision process. By using the principle of optimality, dynamic 

programming reduces the problem to a sequence of single-stage decision 

processes or single variable minimizations. The method is highly 

compatible with repetitive digital computer techniques. An additional 

advantage is that constraints simplify rather than complicate, the 

solution process. Unfortunately the systematic simplicity of the 

method is often outweighed by its enormous storage requirements. Many 

optimal control problems, when cast in a form suitable for dynamic 

programming, require so much computer storage that solution by that 

method becomes infeasible. 

The conjugate gradient methods are direct solution methods. Since 

this dissertation deals with the development and modification of the 

conjugate gradient logic, it is instructive to examine the evolution of 

related direct methods. The development of the conjugate gradient method 

as a tool for solving optimal control problems is currently paralleling 
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that of older direct methods. 

Steepest descent is perhaps the oldest direct method of minimizing an 

objective function of several variables. According to Curry (14), an 

account of the method was given by Cauchy in 1847 and by Hadamard in 

1907 who named it the "method of gradients". The technique is based on 

the simple principle of choosing a trial solution that lies along the 

direction of maximum decrease of the objective function from the previous 

trial. It is intuitively clear that if very small steps are taken, each 

being in the direction of steepest descent from the previous point, the 

rate of decrease of the objective function approaches a maximum. Arrow 

and Solow (2) take this approach to the steepest descent method by 

considering the limiting condition of infinitesimal stepsizes, or 

equivalently, of a continual and instantaneous readjustment of the 

direction of search. However, if the principle of steepest descent is to 

be used as a method of minimizing a function, veiy small scepsizes are 

impractical and inefficient. Curry and others suggested that from each 

point in the search, the negative gradient direction be followed to the 

one-dimensional minimum of the objecting function. Such a procedure is 

often called optimum steepest descent and will be referred to by that 

name in what follows. This method requires a mechanism for locating the 

minimum along each direction of search. However with that procedure 

implemented, optimum steepest descent becomes a useful and reasonably 

powerful computational method (1,33). It should be noted at this point 

however, that if finite steps are taken, the negative gradient directions 

may not be the best directions of search that can be chosen since they 

depend only upon the local nature of the objective function and not 
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upon its nature at previous search points. 

The use of steepest descent for solving optimal control problems 

requires an extension of the method to function space. This extension was 

done by Bryson et £l. (12,13) and by Kelley (41,42,44). In addition, 

these authors and others have derived methods of making steepest descent 

an effective tool for solving control problems involving terminal state 

constraints, state-space constraints, and control variable constraints. 

Developers of the method have used both a penalty function approach and 

Rosen's gradient projection method (64,65) in applying steepest descent 

to constrained problems. Because of the refinements made to the original 

unconstrained versions of steepest descent, the method is now applicable 

to a very broad class of control problems and often can be used to solve 

those problems which cannot be solved by other methods or to which other 

methods do not apply. As a result, steepest descent is a popular 

technique among practicing engineers. 

Second-order direct methods of solving optimal control problems have 

been developed by Breakwell et £l. (11), Kelley et al. (44), McReynolds (54), 

Mayne (51), Jacobson (38) and others. These techniques are extensions of 

Newton's method for minimizing a function of several variables. It is 

easily shown that if finite steps are taken, a quadratic function of a 

finite number of variables can be minimized in one step if the direction of 

search is taken to be the negative gradient direction premultiplied by 

the inverse Hessian matrix (the matrix of second partial derivatives of 

3 
the objective function). Since any function of class C can be expanded 

in a Taylor's series about its minimum, a quadratic approximation is 



www.manaraa.com

6 

valid in some neighborhood of the minimum. If the objective function 

is globally convex, the inverse Hessian matrices evaluated at the search 

points can be used to calculate directions of search which lead to faster 

convergence rates than those obtained from gradient information alone. 

The improved convergence rates result from the second-order terms that 

are retained in Newton's method but are disregarded in the steepest 

descent method. As expected, the superior performance is not achieved 

without cost. Newton's method requires the evaluation of the Hessian 

matrix, a task that for complicated functions of several variables is 

very time consuming. In terms of function evaluations, Newton's method 

of minimizing a function of n variables requires evaluations for 

the Hessian matrix plus n evaluations of the gradient components at each 

step. In constrast, steepest descent requires only n gradient component 

evaluations. In addition, if the inverse Hessian matrix is not positive 

definite everywhere in the search space, Newton's method may not converge 

at all. In spite of these difficulties however, Newton's method produces 

convergence rates that are attractive enough to have led to its extension 

to function space and thus to its application to optimal control 

problems. 

McGill and Kenneth (52) have developed an indirect second-order 

technique called quasilinearization. This method solves the two-point 

boundary value problem obtained from the necessary conditions for 

optimality by choosing iterates that satisfy the boundary conditions 

exactly and that approach satisfaction of the differential equations as 

the iteration proceeds. Another second-order indirect method is called 

the neighboring extremal method (53). It differs from quasilinearization 
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in that the differential equations are satisfied exactly at each step, and 

the boundary conditions are satisfied iteratively. 

Although all second-order methods demonstrate rapid convergence near 

the minimum, they require greater computational effort than do the first-

order techniques, and in addition, they may not converge at all from 

starting iterates that are "far" from the minimum (53). Computational 

techniques that possess the efficiency of first-order methods but 

exhibit convergence properties approaching those of the second-order 

methods are currently of great interest. Several methods are under 

development or refinement for use on optimal control problems. These 

methods, like the first and second-order techniques, have their origins 

in analogous methods for minimizing unconstrained functions of several 

variables in a finite-dimensional vector space. A class of numerical 

techniques called conjugate direction methods combines the computational 

simplicity of the gradient techniques with the rapid convergence 

properties typical of second-order techniques. These methods do not 

require the computation of second-order partial derivatives in 

determining the directions of search. Basically, the improved directions 

of search are a result of the assumption that the objective function can 

be approximated by a quadratic function in the neighborhood of the current 

search point. The properties of the quadratic function are used im­

plicitly in the derivation of the methods to produce directions of search 

that are superior to the negative gradient directions. 

In 1952, Hestenes and Stiefel (32) published the conjugate gradient 

method as a means of solving a system of linear algebraic equations. The 

technique was used by Fletcher and Reeves (26) in 1964 to minimize a 
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function of several variables, or equivalently, to solve a set of non­

linear equations. 

In 1959, Davidon (17) published another conjugate direction method 

that he called the variable metric method but which is often referred to 

by his name. Davidon's method, when applied to a quadratic function, 

sequentially constructs a matrix which converges to the inverse Hessian 

matrix. The directions of search chosen are the negative gradient 

directions premultiplied by the Davidon weighting matrix. The parallel 

between this and Newton's method is obvious. With the exception of the 

first, each direction of search is a particular linear combination of the 

current gradient and the previous direction of search. Thus past 

gradient information is accumulated as the search proceeds. 

In 1963, Fletcher and Powell (25) improved the original formulation 

of Davidon's method and published computational results. Both the 

conjugate gradient (CG) technique and Davidon's method have been the 

subjects of many recent articles. Beckman (4) presented an explanation 

of the CG method that is based on generalized orthogonalization of 

successive gradient vectors. A descriptive discussion of the theoretical 

basis of the CG method is given by Antosiewicz and Rheinboldt (1). 

Important relationships between the CG method and Davidon's method have 

been derived by Myers (57) who shows that the same directions of search 

are generated for quadratic functions if Davidon*s method is started 

using the identity matrix. Mehra (55) gives a method of estimating the 

inverse Hessian matrix from the sequence of gradients and directions of 

search obtained using the CG method. 
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As in the development of steepest descent and Newton's method, the 

CG method has been generalized to apply to functionals on a suitable 

function space. Pierson (59) has solved optimal control problems by 

applying the finite-dimensional CG method to discrete approximations to 

the continuous control problem. The first extension of the method to a 

Hilbert Space was presented by Hayes (30) in 1954. Other treatments of 

the extension have been given by Daniel (15,15), Varaiya (74), Mehra and 

Bryson (56), Lasdon et £l. (50), Sinnott and Luenberger (69), and Pagurek 

and Woodside (58). The contributions of many of these authors will be dis­

cussed in greater detail in later chapters. Tripathis and Narendra (72) and 

Horwitz and Sarachik (35) have treated Davidon's method in function 

space. 

The generalization of the CG method to most optimal control problems 

requires a means of handling constraint relations which involve the state 

variables at the terminal time. Constraints of this type are referred to 

here as terminal state constraints. Lasdon e^ _al. (50) and Mehra and Bryson 

(56) have suggested the use of penalty functions for treating terminal state 

constraints with the CG method. Sinnott and Luenberger (69) have used 

a projection method on problems with linear terminal state constraints. 

However, these techniques have met with only partial success or have 

applied to a limited class of problems. This dissertation attempts to 

expand the knowledge concerning the applicability of the CG method to 

control problems with terminal state constraints and broadens the class 

of problems that have been solved by the method. 
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CHAPTER II. THE CONJUGATE GRADIENT METHODS FOR 

UNCONSTRAINED MINIMIZATION PROBLEMS 

Application to Unconstrained Finite-Dimensional Problems 

The theoretical basis and the computational efficiency of the 

conjugate gradient method are most apparent from an examination of the 

finite-dimensional version from which the function space extensions have 

been derived. The approach taken here is to present first the algorithm 

itself so that the sequence of calculations is clear from the onset and 

then to move to a discussion of the formulae involved. The method is 

discussed in the context of minimizing a function f of n real variables 

which are elements of a real Euclidean vector space In this and other 

chapters, the superscript •* is used to indicate the value of the variable 

at the minimum, i.e. 

f 6 V X «- E.„ (ii_i) 

It is assumed for simplicity that only one minimum of f exists over 

since most numerical algorithms can at best reach a relative minimum. 

The solution procedure involves choosing a new trial vector X 

using the relation 

where the subscript L represents the iteration number, is a scalar 

called the stepsize, and 5. is an -vector called the direction of 

search. Specifically, the GG procedure is as follows: 

1. For î.»0, guess an initial state vector 2io 

2. Calculate the gradient vector at 
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= v+i-Xi_^ (II-3) 

3. Calculate the CG parameter 

A. = ( Si ' ^ (II-4) 

<y,i> denotes the Euclidean inner product defined to be 

<y % "ii 1 ̂ 

and NJ is the Hessian matrix defined by 

M - tA^ 
•àt 

(II-6) 

1-- U 

If Uo, 

4. Calculate the direction of search 

5L - -9i + Ai 

5. Perform a one-dimensional minimization to determine 7. i.e. fi-1.4.1 

^ivi = (II-8) 

where is such that 

•Ç ( Î,. •) 4 f ! %(. + X V ^ > O (II-9) 

6. Increase L and repeat from step 2 until the minimum is reached. 

The above procedure is quadratically convergent meaning that it will 

find the minimum of any quadratic function in a finite number of steps. 

In particular, the CG method will minimize a quadratic function of n 

variables in at most rv steps (32). 

The derivation of the method requires the notion of conjugacy between 



www.manaraa.com

12 

vectors. Two vectors V and vJ are said to be conjugate, N-conjugate, or 

KJ-orthogonal with respect to the matrix M if 

< y , N w > = O . (11-10) 

If the objective function is quadratic so that 

Uf) - i 11^- M (11-11) 

and M is a positive definite matrix with constant elements corresponding 

to the second partial derivatives of f, then the directions of search 

given by II-7 form a mutually conjugate set with respect to M, i.e. 

( , N % O , L / j (11-12) 

It follows that the ^ are linearly independent vectors which span 

Therefore 

The objective is to determine the coefficients in 11-13. Forming the 

inner product (Mx*, ât) , we see that 

k.= o,i^z,.-.rv.i (11-14) 

since 11-12 eliminates all the terms with mixed subscripts. Thus 

r - (11-15) 

But 

V f ( X J ̂  M (1^-1*) = (11-16) 

so that 
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C . <N Ï,, i-O - , iO (11.17) 

^ N 5k> 

Using II-8 repetitively results in 

a .  -  +  Z  0  4 ^ 4 1  ( 1 1 - 1 8 )  

From 11-16 and 11-18, we have that 

g, = N - 1 M 5^ - N-x* (11-19) 

= 3; - 2. Kl o<u 5. o <v j 4 I (11-20) 

Also 

( 9; , = O , L } (11-21) 

as a result of the one-dimensional minimization in II-8. Therefore, if the 

inner product ^ calculated from 11-20, we have 

The first term is zero from 11-21 and the last term is zero from 11-12. 

Therefore 

< 9; , Si-, ) = o t 4 i 4 i (11-23) 

i.e. the gradient at the iteration of the search is orthogonal to 

all the previous directions of search. Returning to 11-17, if k- L-i 

then 
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( ILw , I l > <.K1 1̂ ; -V , s • ) 
u I.z.-a-i (11-24) 

Thus if S. is chosen N-conjugate to all previous directions of search, 

and the stepsize is found using a one-dimensional minimization, the 

value of C. is determined from 11-24. It is clear that after at most a 

steps, all of the coefficients in 11-13 are determined and the minimum 

iterate %. minimizes f over a (^-dimensional subspace where L and Un . 

For non-quadratic functions, the rate of convergence of the method 

depends upon the nature of f, and the location of 

The previous results apply to all methods that generate mutually 

conjugate directions of search, Davidon's method (17) is another conjugate 

direction method that is quadratically convergent. The method of 

constructing the sequence of conjugate directions of search from values of 

the function and its derivatives at the search points distinguishes 

between different conjugate direction techniques. 

Beckman (4) has shown that the CG method determines the directions of 

search by a process that is equivalent to a generalized Gram-Schmidt 

orthogonalization of successive gradients. Each new direction of search 

is determined once the gradient at the current search point is known. That 

gradient depends of course upon the previous direction of search. Thus as 

the iteration proceeds, information about the objective function at all 

previous search points is used to determine new directions of search. 

It is the this accumulation of information, i.e. the dependence of the 

successive directions of search, that accounts for convergence that is 

is located. Convergence can be conçleted in less than n steps if the 
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superior to that obtained by steepest descent. The latter uses only 

current gradient information. 

Many useful relationships exist between the gradients and the 

directions of search at various steps of the CG iteration. These are 

given in (32) along with their derivations. An important simplification 

of II-4 results from the inner product of the direction of search with the 

gradient. Using Equations 11-20, 11-12, and II-7, we have 

o 

= - <91 , + Pi <^1. . ̂ 1-, > . (11-25) 

But from Equations 11-23 and II-7 

(11-26) 

or 

(11-27) 

Therefore from 11-25 

8, - ) (11-28) 

Replacing 5.^ using II-7 results in 

o (11-29) 

. 9i> 

, ^i-v) 
(11-30) 
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This result is valid only when the objective function is quadratic. 

The use of 11-30 instead of II-4 makes it unnecessary to evaluate the Hes­

sian matrix at each step, and thus the CG method requires only the same 

first-order information that steepest descent requires^. Both methods of de­

termining are used in the literature, Daniel (16) and Kelley and Myers 

(45) present comparisons of the two methods on finite-dimensional problems. 

However, very little discussion of a comparative nature is reported for 

the function space extension of the CG method. Since the purpose of 

this thesis is an examination of the CG method as applied to continuous 

control problems, a more complete discussion of the alternate formulae for 

determining is deferred until the continuous problem is considered. 

The convergence of the CG method has been considered by several 

authors and therefore is not the subject of extensive treatment here. 

Antosiewicz and Rheinboldt (1) present a convergence proof based on the 

"method of expanding subspaces". They show that at the iteration 

the directions of search ^ ^generated by 

application of the algorithm to a quadratic objective function span a 

j-dimensional subspace over which the function has been minimized. If 

the minimum is an element of an A-dimensional space, convergence is 

theoretically completed in at most n steps. Daniel (15) has derived an 

error estimate that is superior to the best known estimate for steepest 

descent. The treatments given in both the cited references are 

sufficiently general to apply to Hilbert space extensions of the CG 

method. Before presenting this generalization however, it is necessary 

to give an explicit statement of the optimal control problem. 
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Application to Unconstrained Optimal Control Problems 

A rigorous and formal definition of a general optimal control 

problem is given by Athans and Falb (3, pp. 191-194). To a large extent, 

their nomenclature and their definitions are adopted here. A problem 

formulation that is sufficiently general for the purposes of this 

dissertation is the following. 

From a set of admissible controls, find the control that 

minimizes the functional 

/af 

y F (11-31) 

X 

subject to the differential constraints 

i = 1. (11-32) 

and the terminal constraints or boundary conditions 

J2- l , t; ) = O . (11-33) 

In the above, % is an n-vector of state variables to be controlled, | 

is an n-vector of nonlinear expressions defining the dynamical system 

(see 3, pp. 163-168) to be controlled, u, is an rn-vector of control 

functions on the interval L , ̂ is a p-vector of linear or non­

linear expressions constraining the terminal conditions of the dynamical 

system where p^n+i , F is a scalar function, and t,, are the initial 

and final times which may or may not be specified. The cost functional 

11-31 is in the Bolza form. However if 4»= o, the functional takes the 

Lagrange form, and if F^o, it takes the Mayer form. 

The term admissible requires that the components of a control vector 
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u at any given time t £ It,be chosen from a convex set of real 

m-tuples and that they are piecewise continuous functions of time on that 

interval. The set of admissible controls could be specified as a closed 

and bounded set for all times t> a definition that includes problems with 

bounded controls or control variable constraints. 

The possibility of inequality or equality constraints involving the 

state variables for is not included in the problem statement 

given here because, except by using penalty functions, the CG method has 

not been extended to that class of problems and is not attempted here. 

The functions 0, F, f, and are considered to be real-valued 

functions, and thus J is a real valued functional mapping u(t) to the 

real line. It is convenient to form the Hamiltonian function defined as 

U I 1 ̂   ̂,1: ̂  =. F + h Î (11-34) 

where X« is an n-vector of real adjoint or costate variables on 

, and the superscript T indicates the transpose. 

Although the necessary conditions for optimality can be derived under 

weaker regularity requirements (62), F, f, $, and ̂  will be assumed to 

be continuous and possess continuous first and second partial derivatives 

2 
with respect to all their arguments (class C ) since quadratic expansions 

of "JlSii will be needed. In addition, it will be assumed that the 

2 
Hamiltonian H is of class c with respect to its arguments (50).  

The Bolza form of the cost functional J has been chosen in the 

original formulation. However, certain techniques of numerical optimiza­

tion are more easily derived or applied when the Lagrange or Mayer form is 

used. Simple methods exist for transforming any one of the three forms 
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into either of the other two. These transformations produce problems 

with the same solutions but may alter significantly the ease or 

difficulty with which the solution is obtained using a particular solution 

method. 

The question of existence and uniqueness of an optimal control is 

avoided here as in most treatments of numerical techniques by assuming 

that the optimal control problems to be solved by the methods are 'well 

posed' in the sense that they possess unique solutions. It should be 

stressed that all solution techniques that make use of any of the necessary 

conditions for optimality apply only to problems for which solutions 

exist since the derivation of the necessary conditions presupposes the 

existence of an optimal solution. 

In this thesis, application of the CG method to optimal control 

problems is done under one additional restriction to the definition 

previously presented. It is assumed that the optimal control is an 

element of the space containing all piecewise continuous functions that 

are elements of an unbounded set. The optimality condition is not 

given by Pontryagin £t £l. (62) as a necessary condition since the maximum 

principle is derived for a closed control space. However, for problems 

where the Hamiltonian is of class with respect to its arguments and 

the control space is unbounded, relative minima of 3 will occur when 

satisfies 

^ -.0 (11-35) 

and the other optimality conditions (7). Recently Pagurek and Woodside 

(58) have reported success with a computational modification to the 
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logic which applies to bounded control problems. However, the modifica­

tions necessitated by terminal state constraints are studied here under 

the assumption that all piecewise continuous controls are admissible. 

Lasdon et £l. (50) extend the CG method by considering all controls 

that are elements of a Hilbert space 'H with the inner product 

<, i UK m (f) ) = If) wUWt (11-36) 

and the associated norm 

_ (11-37) 

The necessary conditions for optimality given by Pontryagin's Maximum 

Principle and the Weierstrass condition of the calculus of variations 

indicate that finding the minimum of the functional is equivalent to 

minimizing the Hamiltonian function defined by Equation 11-34 over the 

set of admissible controls. The minimization must be done, however, 

subject to the constraints that the state Equations 11-32 and the 

following costate equations are satisfied for each iteration. 

X = - ̂  (11-38) 

t, 
0%. 

T 
^ (11-39) 

4 
where yU is a p-vector of constant Lagrange multipliers. Lasdon et al. 

(50) consider only problems without terminal state constraints. For 

problems of that type, the boundary conditions on the costates do not 

involve n. In addition, they consider only problems having fixed initial 

and final times and problems having scalar control. These assumptions are 

not particularly restrictive, but each simplifies the necessary conditions 
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and makes the logic of the iteration process more transparent. The control 

problem to which Lasdon applies the CG method is now restated. 

minimize J - IH ^ (11-40) 

subject to X - -f ^ u., t (11-41) 

c Ç _ (11-42) 

The conditions that are necessary for the optimality of a control uCt") 

are: 

& = i I UL (11-43) 

XCO Ç (11-44) 

K ~ ^ K (11-45) 

-- (11-46) 

° (11-47) 

It should be emphasized that the search of the Hilbert space of 

controls for the optimal control u*tO is restricted to the controls 

satisfying the conditions 11-41, 11-42, 11-43, 11-45, and 11-46. A 

discussion of this fact is given in Reference (35). The condition 11-47 

holds only at the minimum of i.e. when T(.u.^= J . The 
U 

expression 

\ ii 
= 5^ (11-48) 

is the gradient to the Hamiltonian and points in the 'direction' of 

increasing J. This can be seen by examining the first variation in J 
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given by 

= + 5 F 6t (11-49) 

The notation represents the first-order approximation to T - TtCL") 

where Q is a given nominal control function. Using the definition of 

the Hamiltonian from 11-34 and requiring the satisfaction of the state 

Equations 11-32 results in 

è F  -  6  (  W  -  h  i  1  =  S l W - x ' i l  ( 1 1 - 5 0 )  

(11-51) 

or 

+ ^ i,. , 
Ô u.  ̂+ "sx - h âi ]cli (11-52) 

Integrating by parts gives 

^3 = % 

(11-53) 

However, because the initial conditions are fixed. Using the 

optimality conditions 11-38 and 11-39, 11-53 becomes 

(It t ̂UL 
S Ix. 

If the variation of the control u. is along a direction of search s, i.e. 

& ̂  S S<%. (11-54) 

where « is a scalar, then the derivative of 3" along s is 
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/ . (11-55) 

Equation 11-55 is the inner product of the direction of search and 

Thus, ̂  plays the role of the gradient vector in the finite-dimensional 

analysis. 

Lasdon's algorithm is given as follows: 

1. For l:0 guess an initial control function 

2. Integrate the state system 11-41, 11-42 from t, to 

3. Integrate the costate system 11-45, 11-46 from to to» 

4. Calculate 

--

5. Calculate j3; using 

<it / .. 
c -2 = ^ . (11-57) 

jP*' 
J q at 

à 

If 1=0, f>0=O. 

6. Calculate the direction of search 

S; ^ _ (11-58) 

7. Let 

+ (x- (11-59) 

and determine o(.^ by performing a one-dimensional minimization, i.e. 

llUL' + 4 > o . (11-60) 
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8. Increase I and repeat from 2 until the minimum is reached. 

Step 5 indicates that Lasdon chose to use the method of calculating 

that is valid in finite dimensional problems for a quadratic objective 

function. An alternate formula analogous to expression II-4 has also 

been derived. A comparison of the applicability and accuracy of the two 

formulae for |â- is given in the next section. This comparison also 

serves to illustrate the convergence properties of the CG method on 

control problems with no terminal state constraints. 

Numerical Solutions of Unconstrained Optimal Control Problems 

In this thesis, all automatic computations reported were performed 

on the IBM 360 model 65 digital conçuter using the FORTRAN IV language 

and double-precision arithmetic with accuracy of approximately sixteen 

decimal digits. Computation times quoted are times used by the central 

processing unit (CPU) during the execution of the program logic. Although 

the CPU time is the best measure of the computing effort required, it is 

not precisely reproducible on identical programs due to the multi­

programming feature of the system. 

All integrations were performed using fourth-order numerical 

integration methods. During initial studies, variable stepsizes were 

used, but experience soon revealed that a fixed stepsize caused very 

little degration in accuracy and increased the computation speeds by as 

much as a factor of two. In addition, the use of fixed stepsizes 

greatly reduces the programming effort since trajectories computed from 

forward integrations are stored at the same time points as those obtained 

from backward integrations. Each one-dimensional minimization required 
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in a solution reported here was based upon a cubic polynomical approxi­

mation to the contour of the function or functional along the direction 

of search. Both function values and derivative values were used to 

determine the polynomial. After a satisfactory approximation was made, 

the minimum of the polynomial was chosen as the optimum stepsize. This 

procedure has been used extensively in finite-dimensional problems (59) 

and has proven satisfactory here for control problems as well. 

A control problem with linear dynamics and quadratic cost was given 

by Hsieh (37) and solved using the CG method by Lasdon e^ £l. (50) as an 

example. Their method was duplicated for the purpose of checking the 

computer program, and the results are presented here to illustrate the 

convergence of the method. Initially, the parameter was determined 

using 11-57. When that formula for calculating is used, the method 

will be called the simplified conjugate gradient method (SCG). A 

statement of problem P-1 is: 

P-1. Minimize 

1 • O. 005 Lk" <At (11-61) 

subject to (11-62) 

(11-63) 

(o\ = I (11-64) 

I % -I (11-65) 

Subscripts appearing on variables that do not have the vector nota­

tion refer to vector elements (e.g. whereas subscripts appearing 
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•with the vector notation refer to iteration numbers (e.g. is the 

second iterate of the vector 2). 

This problem can be interpreted as that of controlling a unit mass 

sliding on a surface with a friction coefficient equal to the reciprocal 

of the gravitational constant. The mass has an initial velocity of - ( 

foot per second and its initial position is = one foot. The 

objective is to find the control that minimizes a linear combination of 

the magnitudes of the velocity of the mass, the deviation of its posi­

tion from T,- one foot, and the cumulative control effort. The initial 

control guess was the unit function a(.i^= 1 . Table 1 gives the results 

of the solution as well as a comparison with a steepest descent solution 

obtained using the SCG program with Mi. Figure 1 shows the 

convergence of the control iterates. After four iterations of the SCG 

method, the control shows a high degree of agreement with the steepest 

descent solution given by Hsieh (37) after twenty-four steps from an 

initial control of cAottVl. 

The calculation of as the inner product of the current gradient 

with itself divided by the inner product of the previous gradient with 

itself was valid in finite dimensions for objective functions that were 

quadratic. It is instructive to examine the conditions under which the 

same simplified expression for is valid in the function space version 

of the SCG method. The Euclidean vector space in which the search 

for the rt-dimensional vector x* took place is replaced in the control 

problem by the Hilbert space "M of control functions. Contours of constant 

values of a quadratic objective function are ellipsoids in E„. The 

analogous situation in function space is for the 'contours' of constant 
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Table 1. Convergence of the unconstrained CG method on problem P-1 

Number i 3 , Çj.) J > %} 

0 .2685 .6 294x10'^ .2685 0.6294x10"^ 

1 .1707 .2350x10"^ .1707 0.2350x10'^ 

2 .8741x10"^ .1138x10"^ .1256 0.1380x10"^ 

3 .7211x10"^ .1790x10'^ .1041 0.6091x10"^ 

4 .7139x10'^ .3837x10"^ 0.9306x10'^ 0.3739x10'^ 

5 .7034x10'^ .2636x10'^ 0.8678x10"^ 0.2322x10"^ 

6 .7003x10"^ .8390x10"^ 0.8283x10'^ 0.1469x10"^ 

7 .6979x10'^ .1464x10"^ 0.8008x10"^ 0.1251x10"^ 

8 .6959x10"^ .2653x10"^ 0.7807x10"^ 0.7723x10"^ 

9 0.7647x10"^ 0.7864x10'^ 

10 0.7526x10"^ 0.4691x10"^ 

11 0.7424x10'^ 0.5174x10"^ 

12 0.7345x10'^ 0.3045x10"^ 

13 0.7277x10"^ 0.3466x10'^ 

14 0.7224x10"^ 0.2056x10"^ 

15 0.7178x10"^ 0.2359x10'^ 

20 0.7047x10'^ .7327x10"^ 

25 0.6990x10"^ .3978x10"^ 
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cost to be quadratic in the control space. If the system dynamics 

(Equations 11-32) of the control problem are linear i.e. if 

t -- D It"! -X (t") + Bit") u.Ltl (11-66) 

% - Xo (11-67) 

then 

% = 0 It,t.") 4. (11-68) 

where is the transition matrix for the system 11-66 and L\_' 1 

is a linear operator defined by 

= J It, Ax . (11-69) 

•to 

A control problem having a cost functional J that is quadratic in the 

state variables % and the control variables u is quadratic in the control 

space Oi only if the states can be related to the control through a 

linear transformation such as 11-68. Nonlinear dynamic equations do not 

in general permit a linear relationship between the states and the 

control. Therefore a quadratic cost functional of the form 

7 --

where 

+ {J (11-70) 

K is a positive semidefinite iax.i1, matrix, 

Qltt is a positive semidefinite inx,n matrix, and 

Ra'i is a positive definite m*in matrix 

does not produce quadratic 'contours' in the control space unless the 

dynamics are linear. 
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The purpose of the previous argument was to determine the class of 

optimal control problems for which the simplified formula 11-57 applies. 

Problems such as the problem of Hsieh with linear dynamics and quadratic 

cost 11-70 constitute that class. 

The alternate means of calculating the parameter for the finite-

dimensional CG method is given by II-4. The CG method obtained by using 

II-4 will be referred to as the pure conjugate gradient method (PCG) . 

Methods for determining using the function space analog of II-4 have 

been derived by Sinnott and Luenberger (69) by Tripathi and Narendra 

(72, 73) and Pagurek and Woodside (58). A similar derivation is given 

in Appendix A. The matrix N in the finite-dimensional version is replaced 

A 

in Hilbert space by the linear operator M. The function Kj can be 

determined after integrating two sets of auxiliary equations. is then 

determined from 

- < gl 1  ̂̂i.-> ) (11-71) 

which requires two quadrature integrations to evaluate the indicated 

inner products. 

Recently some numerical results comparing the two methods of 

determining have been published for optimal control problems by 

Pagurek and Woodside (58). Although two examples of quadratic costs with 

linear dynamics are given, the control variables are bounded in each 

case. Thus the argument that the two methods are equivalent for this 

class of problems is not directly tested. 

The auxiliary differential equations necessary for the calculation of 
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using 11-71 were programmed for the unit mass problem P-1 presented 

previously. Since that problem has quadratic cost and linear dynamics, the 

two methods were expected to give similar results. Table 2 shows that the 

cost functional and the gradient magnitudes were reduced comparably by 

the two methods. The numerical values of differ considerably after 

the second iteration, but this difference is thought to be a result of 

numerical procedures that cause the first non-zero values of ^ to differ 

slightly. This small difference initially leads to different sequences 

of search points in the control space. A direct comparison of the 

numerical values of ^ is not valid unless the steps being compared are 

taken from exactly the same points in the control space. However, it can 

be seen that the overall convergence rates of the two methods are very 

nearly the same. This tends to confirm the validity of the SCG method for 

control problems with linear dynamics and quadratic cost. i 

A comparison of the run times from Table 2 shows nearly a 25% 

increase when using the SCG method. Pagurek reports an increase of 20%. 

The additional programming complexity and the substantial increase in the 

running time that result using the PCG method are sufficient to justify 

the use of the SCG method on all quadratic problems with linear dynamics, 

and on any other problems where the approximation is reasonable. 

An extensive study of the accuracy of the simplified ^ formula on 

problems that are not quadratic with linear dynamics has not been done. 

However, some data are provided here as a result of comparative solutions 

of an unconstrained problem with a quadratic cost but with nonlinear 

dynamics. A statement of problem P-2 in Bolza form follows: 
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Table 2. Comparison of the SCG and PCG methods for problem P-1 

T lU J >•10^ Pi 

Iteration 

Number SCG PCG SCG PCG SCG PCG 

0 0.2685 0.2685 6.294 6.294 

1 0.1707 0.1707 2.350 2.350 0 0 

2 0.0874 0.08750 0.1138 0.1219 0.3734 0.3612 

3 0.07211 0.07778 0.0179 0.2788 0.0484 0.0578 

4 0.07139 0.07218 0.0684 0.0215 0.1573 2.548 

5 0.07034 0.07078 0.0264 0.0154 3.819 0.1241 

6 0.07003 0.07044 0.0039 0.0112 0.3856 0.8301 

7 0.06979 0.06962 0.0146 0.00147 0.3182 0.5962 

8 0.06959 0.06956 0.00265 0.00182 1.744 0.1496 

S C G  PCG, 

Execution times: 13.3 sec. 16.5 sec. 

P-2. Minimize J = t + 2. 4-J" + u'' lit (11-72) 

subject to X, - ( + U. (11-73) 

(11-74) 

O (11-75) 

^ (11-76) 

This problem was given by Schley and Lee (68) who point out that the 

uncontrolled dynamics exhibit a limit cycle on the unit circle in the 

state space. The objective is to find a control that (1) eliminates the 

limit cycle character by keeping that states near the origin and (2) has 
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small magnitude in the integral squared sense. 

Figure 2 shows the optimal controls obtained numerically and the 

results given in (68). Table 3 gives a comparison of the SCG and the PCG 

methods. The rate of convergence was significantly increased by using 

the PCG formulation. After seven iterations of the PCG method, the 

functional value was less than after twenty-four iterations of the 

SCG method. In addition, the PCG method reduced the gradient magnitudes 

more rapidly and more uniformly. 

Lasdon et al. (50) report an oscillation in the magnitude of the 

gradient on a different numerical problem. The phenomenon is exhibited 

in the solution of this example problem and is decidedly more pronounced 

for the simplified j3 formula. An intuitive explanation for this oscilla­

tion might be that the SCG method excludes the possibility of negative 

values of jâ . Geometrically, this says that each new direction of search 

cannot have a component along the negative previous direction of search. 

Quadratic contours of constant cost are everywhere convex and thus should 

never require a direction of search that has a component back along the 

previous line of search. A simple two-dimensional illustration of this 

point is given in Figure 3. 

The restriction that o prevents 'acute angle turns' which on a 

non-quadratic problem could force small stepsizes and require more 

iterations. The solution of this example problem using the PCG method and 

a Lagrange form of the cost functional produced nine negative values 

of in twenty-four steps. 

Although the use of the accurate formula for calculating j3 requires 

additional programming effort and longer execution times, a significant 
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Figure 2. Numerical solutions of problem P-2 
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Table 3. Comparison of the SCG and PCG solutions of problem P-2 

SCG PCG 
Iteration 

Number 

0 10.9118 14.2126 10.9118 14.2126 

1 9.0917 9.7058 9.0917 9.7058 

2 8.3582 7.6621 8.6532 16.1310 

3 8.0449 2.7313 8.0386 3.4232 

4 7.8789 5.5149 7.9311 11.5300 

5 7.8602 3.8629 7.7525 5.2700 

6 7.8428 2.0676 7.6593 1.1127 

7 7.8343 3.2297 7.5981 5.5360 

8 7.8164 8.1103 7.5457 0.6831 

9 7.7815 15.7724 7.5134 2.0770 

10 7.7252 21.6517 7.4964 1.0802 

11 7.6675 19.7288 7.4808 0.2352 

12 7.6359 12.2861 7.4775 0.1489 

13 7.6192 7.0847 7.4748 0.1087 

14 7.6084 5.4209 7.4733 0.04921 

15 7.5985 6.1297 7.4724 0.03817 

16 7,5863 7.0796 7.4719 0.02663 

17 7.5740 5.2600 7.4714 0.01666 

18 7.5667 2.4002 7.4711 0.01465 

19 7.5636 0.9067 7.4708 0.009810 

20 7.5623 0.4469 7.4707 0.004966 

21 7.5615 0.4741 7.4706 0.001526 

22 7.5602 0.9835 7.4706 0.003007 

23 7.5571 2.7723 7.4705 0.0007414 

24 7.5478 7.0189 7.4705 0.001005 
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Figure 3. Contours of constant cost in a two-dimensional space 
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performance advantage appears to be realized when the problem is not 

purely quadratic. A comparison of execution times is given in Table 4 

which indicates that the use of the SCG method rather than the PCG method 

on this class of problems results in an execution time increase factor 

of approximately 2. 

Table 4. Comparison of execution times on problem P-2 using the SCG 

and PCG methods 

SCG PCG 

Execution time for 24 iterations 29.3 sec. 40.2 sec. 

Average time per step 1.22 sec. 1.67 sec. 

Estimated time for eight steps 14 sec. 

In addition to the primary objective of comparing the PCG and the 

SCG methods, this example problem was used to investigate the influence of 

transforming the cost functional from Bolza to Lagrange form. The 

auxiliary equations for calculating j9 that are given by Tripathi and 

Narendra (72, 73) apply to the Bolza form and use different boundary 

conditions than those used by Sinnott and Luenberger (69) who considered 

only the Lagrange problem. The theoretical equivalence of the two systems 

of auxiliary equations can be shown. Computational advantages of one form 

over the other are of interest however. 

The conversion from Bolza to Lagrange form is accomplished by 
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defining a new state variable which satisfies the equation = O . 

The derivative of the term of the Bolza cost functional that depends only 

upon the final states is placed under the integral along with the 

constant function Proper choice of the initial conditions on x„^., 

produces a Lagrangian formulation that is equivalent to the Bolza 

problem. (See Reference 3, pp. 300-301.) The Lagrange form of example 

problem P-2 becomes: 

gfi 
P-3. Minimize Jiu-") (11-75) 

O 
+ 4-X, U + clt 

subject to 

--v-i. - (11-76) 

- 1-, (11-77) 

= o (11-78) 

o (11-79) 

= 2. (11-80) 

V.̂  C o") = Y 4- : "5 (11-81) 

Table 5 presents the PCG solutions of the problem in both Lagrange and 

Bolza forms. The comparable convergence rates seem to substantiate the 

theoretical equivalence of the two sets of auxiliary equations given by 

Sinnott and Tripathi. However, the execution time for twenty-four 

iterations on the Lagrange form was 87% greater than the execution time 

for the Bolza form. This increase is almost certainly explained by the 

introduction of the new state variable. The conclusion that the • 
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Table 5. Comparison of PCG solutions of the Lagrange problem P-2 and the 

Bolza problem P-3 

Iteration 

Number I Lagrange (P-2) Bolza (P-3) 

JCuJ 

0 10.9117 14.0311 10.9118 14.2126 

1 9.5063 14.2618 9.0917 9.7058 

2 8.1717 9.5370 8.6532 16.1310 

3 7.7346 6.3717 8.0386 3.4232 

4 7.7128 3.8221 7.9311 11.5300 

5 7.5924 1.7674 7.7525 5.2700 

6 7.5862 1.0587 7.6593 1.1127 

7 7.5245 1.4299 7.5981 5.5360 

8 7.5197 1.4837 7.5457 0.6831 

9 7.4823 0.2257 7.5134 2.0770 

10 7.4821 0.1352 7.4964 1.0802 

11 7.4742 0.1492 7.4808 0.2352 

12 7.4740 0.1192 7.4775 0.1489 

13 7.4721 0.02477 7.4748 0.1087 

14 7.4720 0.02430 7.4733 0.04921 

15 7.4715 0.01562 7.4724 0.03817 

16 7.4713 0.02774 7.4719 0.02663 

17 7.4709 0.006439 7.4714 0.01666 

18 7.4709 0.006425 7.4711 0.01465 

19 7.4709 0.006732 7.4708 0.009810 

20 7.4708 0.005984 7.4707 0.004966 

21 7.4707 0.002601 7.4706 0.001526 

22 7.4707 0.001640, 7.4706 0.003007 

23 7.4706 0.001394 7.4705 0.0007414 

24 7.4706 0.001011 7.4705 0.001005 
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mathematical description of the optimal control problem should be made as 

simple as possible is probably a valid generalization from the results 

of this example problem. Further conclusions regarding the convergence 

rates of the alternate cost functional formulations cannot be made on 

the basis of the results obtained thus far. 
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CHAPTER III. SOLUTION OF OPTIMAL CONTROL PROBLEMS WITH TERMINAL STATE 

CONSTRAINTS USING THE CONJUGATE GRADIENT METHOD WITH PENALTY FUNCTIONS 

Characteristics of the Penalty Function Method 

Most optimal control problems are constrained by one or more algebraic 

relationships involving the state variables at the terminal time. Although 

these constraints are merely boundary conditions for the variational 

problem, they create complications of a computational nature for any of 

the direct solution techniques. Modifications to either the problem format 

or to the computational algorithm are required. This chapter deals with 

the penalty function method as a means of adapting the CG method to optimal 

control problems with terminal state constraints. The terminal time is 

assumed to be specified explicitly. The terminal conditions may be linear 

or nonlinear algebraic relations of the form 

-Q. 11 - Q (iii-i) 

where Q is a p-vector with p{,n. 

Unlike the other two methods presented in subsequent chapters of 

this thesis, the penalty function approach is an alteration of the form 

of the optimal control problem itself rather than a modification of the 

numerical technique used to solve it. The constrained problem is 

approximated by one or more unconstrained problems by adding to the cost 

functional a positive measure of the constraint violation. If the 

constrained problem has the form given by Equations 11-31, 11-32, and 

11-33, the related unconstrained problem has the following form: 
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/ 
A, 

P-4. Minimize 7 1^6^ - ^ "i Ct,), ^ F1%, 

4. y;"" y y: (III-2) 

T + \J Y (III-3) 

subject to 

i ^ f 1%, , t") (III-4) 

: IL, (III-5) 

where ̂  is a pxp positive definite matrix of penalty constants, and T 

is the constraint violation, i.e. Y: jQ.when x(t^) does not 

satisfy the constraint. 

It can be seen that any violation of the constraint Equation III-l 

adds a positive increment to J. Minimization of T should then drive Y 

to zero as well as to 

The penalty function approach attempts to make controls that produce 

larger constraint violations lie on contours of higher cost in the 

control space than those producing smaller constraint violations. An 

unconstrained relative minimum of T is constructed at the constrained 

minimum of T. From a computational point of view, the geometric nature 

of the relative minimum of T is important. The choice of the penalty 

constants in W influences the 'shape' of the cost functional throughout 

the entire control space. In a typical optimal control problem with 

nonlinear dynamics, the effect of the penalty term in the control space 

is difficult or inçossible to assess without numerical experimentation. 

Thus the choice of the penalty constants is often arbitrary and must be 

altered on the basis of the success or failure of trial solutions. 
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Large penalty constants affect the solution process by causing large 

gradient components for controls that produce large constraint violations. 

The boundary conditions on the adjoint variables involve the penalty 

constants explicitly. The effect of their presence can cause the cost 

functional T to form a very 'steep-sided valley' along the locus of those 

controls that produce constraint satisfaction. The gradients to these 

surfaces point in directions across the valley. Such gradients often 

cause direct methods to make slow progress along the valley and toward 

the minimum. Even the conjugate direction methods which deflect the 

directions of search so that they become more nearly parallel to the axis 

of the valley may converge slowly because the differences in the gradient 

magnitudes in the different directions may lead to the accumulation of 

roundoff errors. 

Mehra and Bryson (56) discuss difficulties encountered in using the 

CG method with penalty functions on nonlinear problems having more than 

two terminal constraints. They state that the eigenvalues of the 

linearized dynamical system often differ greatly in magnitude when 

penalty functions are used, a fact that leads to slow convergence of a 

gradient method. Lasdon, Hitter and Waren (50) report poor convergence 

of the gradient magnitudes when using the penalty function approach with 

the CG method on a simple rocket launch problem. Numerical solutions of 

this problem using penalty functions are given later in this chapter. 

Some of the difficulties encountered using penalty functions can be 

avoided by replacing a single solution attempt by a sequence of solutions 

involving increased weighting of the constraint violation. Each new sub-

problem is started from the solution to the previous subproblem or from 
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an estimate derived from solutions to the previous subproblems. This 

method has been studied extensively by Fiacco and McCormick (21,22,23) 

who call the procedure the sequential unconstrained minimization technique 

(SUMI). Under certain convexity requirements, they prove that when 

applied to a constrained function of several variables, the method 

produces a sequence of solutions that converges to the constrained 

minimum. The same procedure can be applied to the control problem and 

has been used successfully in this study. Unfortunately, the choice of 

the penalty constants used in each unconstrained subproblem must still 

be made arbitrarily at first and modified on the basis of experience with 

each problem. Fiacco and McCormick (21) have suggested several criteria 

for choosing both the initial values of the penalty constants and the 

amount of their increase between subproblems. However these estimates 

are derived for finite-dimensional problems with inequality constraints. 

In practice, the arbitrary choice of the penalty constants for control 

problems has not been especially difficult. 

Numerical Solutions Using Conjugate Gradient 

Methods With Penalty Functions 

Two numerical examples are presented here to demonstrate the use of 

penalty functions with the conjugate gradient method. The first is the 

rocket launch problem given by Lasdon, Mitter and Waren (50). The 

objective is to maximize the horizontal velocity of a rocket under the 

2 
assumptions of a constant gravitational acceleration of 32 ft./sec. , 

two-dimensional vacuum flight, and a constant thrust acceleration of 

twice the gravitational acceleration. The control variable is the thrust 
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direction with respect to the horizontal. The thrust time is specified 

as 100 seconds and the terminal boundary conditions require a vertical 

velocity of zero at an altitude of 100,000 feet. After nondimensionalizing, 

the mathematical problem statement becomes: 

P-5. Minimize T = - (, n (III-6) 

subject to (III-7) 

% U..4r ilin U - 3. Z (III-8) 

^3 = (0.4. COi u (III-9) 

with X, (.0^= o (III-IO) 

(III-ll) 

% ̂ - o (III-12) 

\ (III-13) 

(III-14) 

Introduction of penalty functions to account for the terminal state 

constraints gives the new cost functional 

I - -x^tn + loo 4 0.iP^X2of (III-15) 

where W has been chosen to be 

\oo o 

O 0.1 Pg 

Problem P-5 admits an analytical solution of the form = tan"* Ib-Ot) 

although the constants b and c must be determined by solving simultaneous 

transcendental equations numerically. The 'exact' solution based on the 
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values b- 4,8412 and 0= 0.06319 is included in the results given here 

for comparison purposes. The solution given in Tables 6 and 7 was 

obtained using the SUMT approach with the PCG method starting from an 

initial control of u.o(.t1= \ - . The solution method differs from 

that apparently used by Lasdon et al^. (50) in that a sequence of sub-

problems was solved with each subproblem using the PCG method instead 

of the SCG method. Four unconstrained problems were solved using the 

values for the penalty constants given in Table 8. 

An oscillation in the magnitude of the gradient was mentioned by 

Lasdon eit £l. (50) and was also observed in the SUMT-PCG solution given 

here. Investigation of several causes led ultimately to the opinion 

that the nature of the cost functional for this problem was very irregular 

along many directions of search. Figure 4 is a plot obtained by computing 

both the value of the functional J and its slope along the direction of 

search at various points along the direction of search, BETA represents 

the original stepsize estimate used to initiate the one-dimensional 

minimization and is based upon the optimum stepsize obtained from the 

previous iteration. The extremely non-unimodal character of the contour 

suggests the reason for the oscillation of the gradient magnitudes. 

Several contours were observed that had very small negative slopes at 

the search points and relative minima at extremely small stepsizes in 

relation to those that occurred on other iterations. The appearance of 

more than one relative minimum makes the location of the proper minimum a 

difficult task for automated logic. In contrast. Figure 5 shows another 

profile from the same unconstrained subproblem which exhibits unimodal 

character over an even larger range of stepsizes than given in Figure 4. 
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Table 6. SUMI-PCG solution of the rocket launch problem P-5 

Numerical 'Exact' 

Time (sec.) Solution for (rad.) Solution U*lt) (rad.) 

0.0 1.3646 1.3670 

5.0 1.3545 1.3532 

10.0 1.3407 1.3375 

15.0 1.3234 1.3193 

20.0 1.3023 1.2981 

25.0 1.2771 1.2732 

30.0 1.2471 1.2434 

35.0 1.2107 1.2073 

40.0 1.1659 1.1627 

45.0 1.1091 1.1066 

50.0 1.0347 1.0343 

55.0 0.9347 0.9387 

60.0 0.7984 0.8097 

65.0 0.6153 0.6331 

70.0 0.3802 0.3960 

75.0 0.1020 0.1019 

80.0 -0.1923 -0.2104 

85.0 -0.4666 -0.4869 

90.0 -0.6938 -0.7017 

95.0 -0.8658 -0.8598 

100.0 -0.9896 -0.9756 
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Table 7, SIMT-PCG solution of the rocket launch problem P-5 

Time (sec.) Numerical Solution 'Exact' Solution 

% It) (ft.) %jt')(ft./sec.) H,rà(ft.) V^Hft./sec.) 

0.0 0 0 0 0 

5.0 383 153.1 383 157.9 

10.0 1,529 305.1 1,528 304.8 

15.0 3,432 456.1 3,429 455.5 

20.0 6,087 605.5 6,080 604.6 

25.0 9,484 753.0 9,472 751.7 

30.0 13,612 897.9 13,593 896.2 

35.0 18,457 1039.4 18,429 1037.4 

40.0 23,999 1176.3 23,959 1173.9 

45.0 30,210 1306.9 30,157 1304.1 

50.0 37.052 1428.1 36,985 1425.1 

55.0 44,468 1535.0 44,385 1532.3 

60.0 52,365 1619.4 52,272 1618.2 

65.0 60,603 1668.0 60,512 1670.4 

70.0 68,954 1661.6 68,887 1669.0 

75.0 77,091 1578.6 77,070 1588.7 

80.0 84,587 1404.2 84,611 1411.1 

85.0 90,982 1140.0 91,025 1140.7 

90.0 95,867 803.8 95,902 800.5 

95.0 98,938 418.1 98,954 414.6 

100.0 99,997 1.5 100,000 0.0 

"Kj 1100")= 3510.1 (ft./sec.) 00o)= 3508.1 (ft./sec.) 
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Table 8. Penalty constants for the SUMT-PCG solution of the rocket 

launch problem P-5 

Subproblem Number 
^2 

1 2 5 

2 20 50 

3 200 500 

4 2000 5000 

Penalty constants from Reference (50) 

P^ = 200 P» = 500 
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Figure 4. Functional contour along one direction of search in problem P-5 
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Stepsize/BETA 

Figure 5. Functional contour along one direction of search in problem P-5 
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This problem and subsequent experience indicates that a reasonably 

sophisticated one-dimensional minimization method should be implemented. 

The procedure should bracket the relative minimum with a small enough 

interval that the functional contours are at least unimodal between the 

bracket points. A polynomial fit would be accurate in such a case. A 

Fibonacci search technique (70), however, depends upon a unimodal character 

of the function along the direction of search and for the optimal control 

problem may have difficulty in determining the minimum. 

A second numerical example of the penalty function approach using 

the PCG method is given by the solution of the Van der Pol problem 

(8,71). 

/

6 

+ X-l + ] cSt (III-16) 

subject to ^ (III-17) 

- X, + ( x,2 + U (III-18) 

%,lo^ - 1 (III-19) 

t o (III-20) 

n c X (S")) = (f) 4. XjCS") - O (III-21) 

The penalty term was of the form ^ P I £1 (.•xw'))] and the initial control 

iterate was O , 04t<, 5 . Table 9 gives the values of the 

functional and the constraint violation resulting from each subproblem. 

The solution to the Van der Pol problem presented in Table 9 was 

obtained after several trial sequences of penalty constants were tried. 

A single unconstrained solution was made using a penalty constant value 
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Table 9. SUMT-PCG solution of the Van der Pol problem P-6 

Subproblem 

Number 

Penalty 

Constant, P 
"f: SKliS)) Number of 

Steps Taken 

1 10 1.65837 -0.05565 8 

2 50 1.68340 -0.01171 2 

3 250 1.68527 -0.002367 5 

4 1,250 1.68633 -0,000462 2 

5 6,250 1.68652 -0.000092 2 

of P = 250. Again, the initial control was UoCf)- O . The results are 

given in Table 10. It is evident from the data that the SUMT approach 

with penalty function converges more rapidly than the solution of a 

single unconstrained problem with a relatively large penalty constant. 

The fixed penalty constant method did not produce an accurate solution 

after 38 iterations. However, the SUMT method converged satisfactorily 

in a total of 19 iterations. The CPU times also reveal the greater 

efficiency of the SUMT approach. 

It should be noted that the penalty function approach may be used 

for nonlinear as well as linear constraints. A fixed penalty constant 

solution of the Van der Pol problem was accomplished using the nonlinear 

constraint given in Chapter IV by Equation IV-59. The presence of the 

nonlinear constraint presented no additional complications. 
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Table 10. Penalty function solutions using fixed penalty constant and 

SUMT methods on problem P-6 

SUMT Fixed Penalty Constant 

Iteration Penalty 
t 

Penalty 
J Y 

Number Constant 
t 

Constant 
Y 

1 10 7.8901 0.06054 250 8.0154 0.00184 

2 2.1427 -0.03214 7.5215 0.03647 

3 2.0813 -0.10543 7.1919 0.05554 

4 2.0456 -0.02881 6.8867 0.06806 

5 1.7207 -0.12491 6.5547 0.07231 

6 1.6824 -0.06012 3.1067 -0.01820 

7 1.6745 -0.06622 2.8850 -0.03530 

8 1.6739 -0.05565 2.7197 -0.0434 

9 50 1.6882 -0.01258 2.5183 -0.0474 

10 1.6868 -0.01171 2.1027 -0.00089 

11 250 1.6898 -0.02451 2.0720 0.00038 

12 1.6872 -0.00187 2.0687 -0.00452 

13 1.6871 -0.00240 2.0604 -0.00024 

14 1.6860 -0.00214 2.0575 -0.00447 

15 1.6860 -0.00237 2.0496 0.00003 

16 1,250 1.6865 -0.00047 2.0466 -0.00454 

17 1.6865 -0.00046 2.0215 -0.00382 

18 6,250 1.6865 -0.00010 2.0116 0.00670 

19 1.6865 -0.00009 1.9683 -0.00568 

27 1.6882 -0.00238 

38 1.6859 -0.00235 

CPU time 30.1 sec. 52.5 sec 
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In spite of the fact that the penalty function approach can produce 

satisfactory solutions to many constrained problems, the disadvantages of 

the method that arise in conjunction with the ordinary gradient methods 

seem equally apparent with the conjugate gradient methods. Specifically, 

the characteristics of the technique that are not appealing are first, 

that in order to obtain the solutions to most constrained problems, an 

entire sequence of unconstrained problems must be solved, and second, the 

proper values of the penalty constants must be found by experience before 

an efficient solution is obtained. This latter problem stems from the 

unknown effect on the geometry of the cost functional due to arbitrary 

weighting of terminal errors in the state space. Large elements of the 

penalty matrix often cause poor convergence. However, if the SUMI 

approach is used with small penalty constants for the first several 

subproblems, the number of unconstrained solutions necessary to obtain the 

constrained solution may become excessive. Care should be taken to use 

the most efficient method possible to solve each subproblem. The ad­

vantage of the PCG method over the SCG method, for example, is magnified 

considerably when a sequence of solutions is being computed. 
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CHAPTER IV. SOLUTION OF OPTIMAL CONTROL PROBLEMS WITH 

TERMINAL STATE CONSTRAINTS USING THE CONJUGATE GRADIENT 

METHOD WITH A PROJECTION TECHNIQUE 

Theoretical Basis of the Projection Method 

In this chapter an adaptation of the conjugate gradient method is 

made which is equivalent to the method used by Bryson and Denham (12,18) 

in adapting the steepest descent technique to control problems with 

terminal state constraints. The method was suggested and implemented by 

Sinnott and Luenberger (69) for a class of control problems with linear 

terminal constraints. Some alterations in the method they present are 

given here, and the method is shown to be applicable to problems with 

nonlinear constraints as well. 

The basic procedure of the methods discussed in this chapter is to 

project the gradient vectors onto a linear constraint manifold and then 

to determine the directions of search from the projected gradients in the 

standard CG fashion. Rosen (64,65,66) developed the gradient projection 

method for linear and nonlinear programming problems. Recently Kelley and 

Speyer (46) have combined the projection technique with Davidon's method for 

solving finite-dimensional problems. The function space projection 

techniques of Bryson and Sinnott and Luenberger (69) are analogous to 

Rosen's finite dimensional work. Although the derivation of the 

projection equations is outlined in Reference (69), a more complete 

derivation is presented here. This derivation leads to a necessary 

alteration in the equations given by Sinnott and Luenberger. 

Consider the p constraint equations in a Euclidean n-space given by 
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A Tt = o (IV-1) 

where A is a pxn matrix of constants and % is an n-vector of problem 

variables. As in Reference 66, let Q be the set of all j that satisfy 

(IV-1) and let Q be its orthogonal complement. Qis an n-p dimensional 

space whereas Qis p-dimensional. The gradient to the L constraint 

hyperplane is given by the vector 

d \ 
I 

y 

where is the row and the j column element of A. Any vector 

in Q is orthogonal to all p hyperplanes given by IV-1 and thus can be 

represented by a linear combination of the rows of A. If a change AX 

in the vector ^ is sought which is orthogonal to Q, then 6% can be 

written as a linear combination of the rows of A, i.e. 

AX = c, 

a. 

o... " \ / 

4" 

I 
••u 

a.; zn 

I 
ÛL pz 

\ '• 
a.. 

(IV-2) 

(IV-3) 

Thus if X does not lie in Q but does we have 

A r (IV-4) 



www.manaraa.com

58 

where Y is the constraint error vector and 

A I iç 4. = O (IV-5) 

or 

A =  -  Y  ( I V - 6 )  

À/Cç -ri (IV-7) 

so that 

Ç =. -  [  y V (IV-8) 

From IV-3 we obtain 

1-1 
i\li - - I A AT 1 Y (IV-9) 

so 

- =  ^  ^  I A A  l '  Y  ( I V - 10) 

= % - A^LAAT'A-2. ^ (IV-11) 

Therefore if | is the projection of a vector % onto the linear constraint 

manifold then 

Z  - H - / C l A A J  A  2  ^ (IV-12) 

The function space analog of IV-12 can now be derived. Linearization 

of the system dynamics given by 

t -- 1 1%, U,t) (IV-13) 

about a nominal control produces the system 

^3: = A% + AUr (IV-14) 

ÙX It,) c O (IV-15) 

where 

av-16) 
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The solution form for this system is 

Ci) = y 0 AUC-C-» a-C 

t. 

(IV-17) 

= S L (IV-18) 

where S is the linear operator defined by IV-17 and is the state 

transition matrix for the linear system IV-14. Suppose the optimal 

control problem has terminal state constraints of the form 

A % Ltj.") - O (IV-19) 

where A is a p^iri constant matrix. If does not satisfy the constraint 

but does, i.e. if 

and 

then 

or 

Axu^-) - Y 

A V AX = o ^ 

A = 

y A Aui-Oci-c = - Y ^ 

U 

We desire that Equation IV-23 be the analog of Equation IV-6. To 

establish the analogy, we may regard IV-6 as 

< A«i^ ûx) 

<Aftp , 6%) 

(IV-20) 

(IV-21) 

(IV-22) 

(IV-23) 

-M' •= 
(IV-24) 
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where is the row of A. Now using the inner product given by 

11-36, IV-23 may be written as 

\ 

\ • I 

(IV-25) 

The analogy between IV-24 and IV-25 is complete if: 

1. A in IV-6 is replaced by 

A - A $ (IV-26) 

2. t is replaced by A 

3. A multiplied by a member of the t-space is replaced by the 

inner products of the rows of X with the analogous member of 

the Li-space. 

The analog of IV-9 becomes 

( Âa.-ù • -

1 (IV-27) 

• • • C^Rp,^S.p) 

It is important to note that in IV-27 f is a p-vector of constants. The 

projection of an element z (t") is given by 

(IV-28) = Z It) + A ? (.tl 

Z(t) - A 
• J,-tf 
J KK'^dii 

'fi 
1 A EU'ldt 
J 
•̂ o 

(IV-29) 

The final factor in IV-29, 
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I 
.i. 

A  1  

represents a transformation from the Hilbert space containing in) to 

the real Euclidean space [p. It is a p-vector of constants just as Y 

is a p-vector of constants in IV-27. Therefore, IV-29 is the proper 

analog to IV-12. This result differs from that obtained in (69) which is 

The final factor in IV-30 is not a constant p-vector and does not satisfy 

the third point in the analogy established earlier. However, the 

equivalence of the projection formula given in IV-29 to that given by 

Bryson (12,56) is easily established. The differences lie only in 

notation. 

With the substitution of IV-29 for IV-30, the algorithm given by 

Sinnott and Luenberger is the following: 

1. Choose an initial control function UoCt) 

2. Integrate forward the state equations 

(IV-30) 

Application of the Projection Theory to the 

Conjugate Gradient Method 

i - - lo 

and the auxiliary equations 

(IV-31) 

(IV-32) 

3. Integrate backward the adjoint equations 

X = -L h - ^ (IV-33) 
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and the auxiliary equations 

J. (i) - -ft vt , ^ 

Compute the gradient function 

3 ^  r  r  
^ F. 

Project the gradient via the formula 

giltl = % 

where 

M A A 
-I 

Project the previous direction of search 

b,., -iJviKÀj 

•Ç T 

Calculate the conjugate gradient parameter jS^ 

<i.. >i-,> 

where 

M % » Fks % + r** lc-> 

V lt\ = y =- lt.^= c 

%  ̂  ̂ 5,.,, 
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(IV-45) 

(IV-46) 

8. Calculate the direction of search 

+ (S'u %L., (IV-44) 

9, Perform a one-dimensional minimization to determine o^i.e. 

4 3 + % ^^1 V J( > o 

10. Take a forward step 'parallel' to the constraint. 

Q-Ui = 

is a stepsize adjustment parameter discussed below. 

11. Compute ^ I 

t- ? 

where is obtained from 1 

12. Compute the control correction in a direction orthogonal to the 

constraint 

= - iu, -A M (IV-47) 

13. Correct the control 

u + A, Au.: (IV-48) 

where A' is another stepsize adjustment parameter discussed 

below. 

14. Repeat from step 2 until the minimum is reached. 

The algorithm above represents an adaptation of the PCG method. The 

choice of this conjugate gradient method instead of the SCG method is 

justified by the superiority of the PCG method for unconstrained 

problems. 

The stepsize adjustment parameters appearing in steps 10 and 13 are 
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necessary because of the linearization of the system dynamics in Equation 

IV-14. If changes in the control are too large for the linearization to 

be valid, the projection equations become inaccurate. Similar problems 

are present when the projection technique is used with the steepest 

descent method. With the latter method however, the solution is merely 

to restrict stepsizes to the degree necessary for the linearization to be 

valid. After a forward step has been taken in step 10, the constraint 

violation can be compared with that before the step was taken. If the 

direction of search is 'parallel' to the constraint, and the linearity 

assumptions have not been violated, Y values should be nearly equal 

(56). If however, the constraint violations are significantly different, 

linearization has been violated, and a smaller stepsize is necessary. 

The parameter m- must be reduced from its original value of 1.0. 

Similarly, a linearization check can be made on the correction step by 

comparing the actual change in the constraint violation &Y after step 13 

to the quantity which is calculated by integrating the linearized 

state Equations IV-14. The adjustment parameter is reduced if a 

significant difference occurs between and A « The stepsize 

adjustment philosophy just described is similar to that used with 

steepest descent and will be referred to here as stepsize adjustment 

policy I (SAP-I). 

Although Mehra and Bryson (56) suggest its use with the CG method, 

they report no computational experience using SAP-I with that technique. 

A very basic difference between steepest descent and the CG method raises 

doubts about the merits of using SAP-I with the latter technique. With 

steepest descent, stepsizes are usually chosen by an automated trial 
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process. Changes in the control history are constrained isoperimetrically, 

i.e. the control change must satisfy the constraint 

- f A. W AU cl t (IV-49) 

where Vj is a weighting matrix and clP is a positive constant. The quantity 

d is chosen small enough so that the linearized theory of the projection 

method remains valid. The theory of the conjugate gradient method 

however does not permit alteration of the stepsize. The rapid 

convergence of the method depends upon completing a one-dimensional 

minimization along each direction of search. Thus an adjustment of the 

stepsize to accommodate the linearity assumptions could be expected to 

degrade the rate of convergence of the method. If the stepsizes chosen 

automatically by the CG logic do not violate the linearity assumptions 

however, the projection method becomes compatible with the CG method. 

Presumably, the linearity assumption becomes better as the control 

approaches the optimal control. 

A different stepsize adjustment policy is suggested here for use 

with conjugate gradient methods. Instead of reducing the stepsize 

adjustment parameter until linear approximations are accurate, this 

policy reduces from 1.0 only if 

1. The 'correction' in 13 leads to greater rather than smaller 

constraint violation, or 

2. The value of the cost functional after correcting the control 

in 13 becomes larger than the cost before the forward step was 

taken (step 10). 
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This stepsize adjustment philosophy is referred to as SAP-II. Other 

authors^'^ who have proposed the use the projection method have not 

reported an automatic policy for choosing m- and A;. The advantage of 

SAP-II is that larger stepsizes can be taken, thus permitting rapid 

convergence. A disadvantage is that even though the correction equation 

(IV-48) may be sufficiently accurate to move the control toward the 

constraint rather than away from it, the approach could be very slow 

because of a poor approximation produced by the linearized state 

equations. To improve this deficiency, several small corrections can 

be used in SAP-II instead of one single attempt to reduce f. This can be 

accomplished by choosing n;^ such that o<.n-<,UO, and then executing 

steps 12 and 13 alternately until the constraint violation is within 

acceptable limits. Logic flow diagrams of the alternate stepsize 

adjustment policies are given as Figures 6 and 7. 

Numerical Solutions Using the Conjugate 

Gradient-Projection Method 

Both SAP-I and SAP-II were used to solve the Van der Pol problem 

P-6 presented in Chapter III. Acceptable linearity violations using 

SAP-I were set at 10%,. That is, if the constraint violations that 

occurred before and after step 10 differed by more than 10%, the parameter 

^Mehra, R. K. The Analytic Sciences Corporation, Reading, 

Massachusetts. Private communication regarding the choice of values for 

the stepsize parameters. June 6, 1969. 

^Luenberger, D. G. Stanford University, Stanford, California. 

Private Communication regarding the choice of values for the stepsize 

parameters. July, 1969. 



www.manaraa.com

67 

Compute Y using u 

Set m - = \. o 

Perform a l-dimensional minimization 

to determine x, 

Take forward step y.;*, - tot-m-, s-

Compute ^ using viui 

—I m,;-m.-ArY\ I 

YES 

is 

'fo differenĉ  

^between ^ and 4! too, 

large ? 

Set IT.- =1. 0  

Take a correction step 

Compute T using 

A,. Y - f 

Compute A, - A 

by integrating linearized 

state equations 

betwe n: -n. - A n  

IS If I 
fallowable 

imit? 

Repeat Algorithm from step 2 

Figure 6. Logic flow diagram for SAP-I 
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Figure 7. Logic flow diagram for SAP-II 
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m; was reduced and step 10 repeated. Similarly, if the control change 

AU; in step 13 caused the change in the constraint violation Af to differ 

by more than 10% from A, the parameter n. was reduced and step 13 

repeated. Table 11 gives the results for the first ten iterations as 

well as Sinnott and Luenberger's results (69). No information is available 

concerning the values of tri; and n- used by those authors. The solution 

was started with the control u. ciV O . Figure 8 gives the control 

iterates and the optimal control given by Birta and Trushel (8). 

It can be seen that stringent limits on the linearity checks cause 

stepsize restrictions that are unnecessarily severe. The convergence of 

the SAP-II solution, which used full steps both in the forward direction 

and on the correction steps, compares favorably with the solutions given 

in Chapter III and in References (8) and (69). It should be noted that 

the maximum linearity violation that occurred using SAP-I was less than 

approximately 100% on the forward step and less than 30% on the correc­

tion step. Relaxation of the violation limits to those levels would 

have produced results identical to the SAP-II solution. 

Both solutions given in Table 11 used Equation IV-29. When 

Equation IV-30 was used, the convergence was extremely slow. 

Although the terminal state constraints for this problem are linear 

in the state space, they are not linear in the control space. This is 

due to the nonlinear dynamics that define the relationship between the 

control function and the state trajectories. Figure 9 shows the per­

centage change in Y along the direction of search from the second 

iteration on the Van der Pol problem using SAP-I. Enforcing adherence 



www.manaraa.com

Table 11. Solution of the Van der Pol problem P-6 using the CG method 

with projection 

Iteration 

Number 

SAP-I SAP-II 

Solution from 

Reference (69) 
Iteration 

Number 
T Y J Y T Y 

0 7.4781 0.6313 7.4781 0.6313 7.4780 0.6313 

1 4.2684 0.5932 2.2228 -0.04083 2.6584 0.1457 

2 4.8778 -0.09158 1.7276 -0.006006 2.4580 -0.0153 

3 4.4264 -0.005444 1.7108 lYl < 10'^ 2.2338 0.00827 

4 4.3015 in < 10'*' 1.7012 Irl < 10''' 1.8287 -0.0331 

5 3.9808 IV1 < 10'* 1.6995 lYl < 10'^ 1.7850 -0.000503 

6 3.8744 If i < 10"® 1.6933 lYl < 10"^ 1.6944 0.00426 

7 3.5774 iri < 10'^ 1.6921 Irl < 10-"^ 1.6874 -0.000368 

8 3.4892 ITl <lo' 1.6883 lYl < 10-'- 1.6861 lYl < lO"*' 

9 3.2393 lYl < 10"^ 1.6881 Irl < 10'^ 1.6860 14^1 < 10""' 

10 3.1650 

• 

lyl < 10* 1.6869 Ifl < 10'̂  1.6853 Irl < 10-1 
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Figure 8. Control iterates in the solution of problem P-5 
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Figure 9. Constraint nonlinearity in problem P-6 



www.manaraa.com

73 

to the 10% linearity violation limit would have allowed a maximum of 32% 

of the optimum stepsize along the direction of search. The fact that the 

curve approaches zero slope for very small stepsizes is in agreement with 

the notion that the direction of search is 'parallel' to the constraint 

at the point from which the step is initiated. However, the constraint 

violations do not remain the same for all controls along the direction 

of search but instead increase rapidly as larger stepsizes are chosen. 

To demonstrate the point that linear system dynamics as well as 

linear constraints are sufficient to make the projection and correction 

equations valid for large stepsizes, a very simple control problem is 

presented. A mathematical statement of the problem is: 

P-7. Minimize J - (IV-50) 

subject to "x, - 'y-i (IV-51) 

(IV-52) 

-- u" (IV-53) 

T, (.o^i - X2_^o'\ - - o (IV-54) 

=5 (IV-55) 

where position 

Xj,- velocity 

and variable used to create the Mayer formulation. 

Problem P-7 may be thought of as a physical problem whose objective is 

to maximize the velocity of a unit mass by determining the forcing 

function u H") that must act on it for one second. The final position 

of the mass is constrained and the integral squared force is penalized. 
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The mass slides on a surface with viscous friction, and the friction 

coefficient is the reciprocal of the gravitational constant. The physical 

system for this problem is identical to that of problem P-1. However, the 

objective here differs from that of problem P-1. 

The projection method starting from the control lAoIt) = 5© - 50t 

converged to the analytical solution in essentially one step. Table 12 

gives the values of the cost functional J and the terminal position of 

the mass u") using controls Uotti and . The simplicity of the 

problem accounts in part for the rapid convergence. This single-step 

solution does demonstrate however that application of the projection 

method to this problem with linear dynamics and a linear constraint 

produces an initial direction of search that is parallel to the con­

straint. This is evidenced by the fact that the constraint violation 

after the control change of step 10 was virtually eliminated by the control 

correction of step 13 with A-11.0. 

Table 12. Solution of the unit mass problem P-7 with the CG-projection 

method 

Iteration 

Number i. 
J/ 

0 

1 

820.12 

142.74 

11.787941 

5.000067 0.49881 

j" - 143.78 



www.manaraa.com

75 

Extension of the Method to Problems With 

Nonlinear Terminal Constraints 

The previous argument suggests that the projection method could be 

applied to optimal control problems having nonlinear terminal constraints 

n It;)) (IV-56) 

where is a p-vector, merely by linearizing the constraint expression 

about the current search point. This gives 

It;)) + 

Then iâ 

b\ 

replaces the matrix A, and IV-22 becomes 

= 

A % , (IV-57) 

(IV-58) 

where is determined using the control about which the state 

dynamics are linearized. Although such a procedure adds another approxi­

mation to the problem, it does not cause additional difficulties 

conceptually since in problems with nonlinear dynamics, the constraint 

is nonlinear in the control space whether its form in the state space is 

linear or not. It should be noted that no linearity requirement on the 

constraints is made when the projection method is used with the steepest 

descent iriethod (12). 

For the purposes of numerical example, the terminal constraints on 

the Van der Pol problem were modified as shown in Figure 10. The linear 

constraint was replaced by a parabolic constraint which was tangent to the 

linear constraint at the solution point to the original problem. The 

constraint relation takes the form 
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Figure 10. Terminal constraint curves for problem P-6 
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4- -y.2.u^r IV Vj 

+ X, It;^ + 

c-, pt - c.,p, 

K 

ZK 

- o, + 
p. + fl 

p ' + ?i -^ptpî 

(IV-59) 

where K is a constant determining the curvature of the parabola, p, 

and are the coordinates of the vertex of the parabola and c^~ ̂  . 

The Van der Pol problem with the nonlinear constraint given by IV-59 will 

be called problem P-8. The numerical solution to the Van der Pol problem 

with the nonlinear constraint of Equation IV-59 is given in Table 13. 

Stepsize adjustment policy II was used in the solution. A penalty 

function solution of this problem produced an optimal control and a 

minimum value of the cost functional that were virtually the same values 

as those obtained here and elsewhere for the Van der Pol problem with the 

linear constraint. Computationally, the use of the nonlinear constraint 

instead of the linear constraint caused no apparent additional diffi­

culties. In both solutions, the stepsize parameters nri; and n- were not 

reduced by SAP-II from their original values of 1.0. The convergence 

rates were also comparable. These solution data tend to substantiate 

the claim that the projection method with a stepsize adjustment policy 

that is workable for problems with nonlinear dynamics is applicable to 

problems with terminal constraints that are either linear or nonlinear. 

It can be speculated however, that the linear approximations to the 

constraints could, in general, cause the method to take smaller step sizes 

and make less accurate corrections than it would if the constraints had a 

linear representation in the state space. 
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Table 13. Solution of the Van der Pol problem P-8 

Iteration 

Number T Y 

0 7.4781 -0.7270 

1 2.0979 -0.1931 

2 2.0767 -0.1956 

3 1.8710 -0.01368 

4 1.8412 -0.001153 

5 1.8323 -0.000132 

6 1.6935 -0.001025 

7 1.6907 |Y|<lo"4 

8 1.6905 0.000156 

9 1.6862 IH'UIO"^ 

10 1.6862 lYIClo"^ 

K = -4 p^ = -.2293 P2 = .7707 
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CHAPTER V. A MODIFIED CONJUGATE GRADIENT METHOD FOR SOLVING 

CONSTRAINED MINIMIZATION PROBLEMS 

Development and Application of the 

Method in Finite-Dimensional Spaces 

Both the penalty function and the projection methods have properties 

that detract from either their theoretical or computational attractive­

ness. These disadvantages have been discussed in the previous chapters. 

Neither technique is a totally satisfactory solution to the problem of 

adapting basic conjugate gradient methods to control problems with 

terminal state constraints. This chapter reports another attempt to 

adapt the CG ideas to a solution method for that class of problems. 

Although the method also possesses disadvantages principally of a 

computational nature, it avoids some of the difficulties encountered in 

using the other two methods. ' In addition, it represents an approach that 

is substantially different from other methods reported in the literature. 

The use of conjugate gradient methods on unconstrained control 

problems is an extension to function space of an algorithm originally 

presented as a means of minimizing a function on a finite-dimensional 

vector space. Similarly, the method reported here is an extension of a 

scheme to solve constrained finite-dimensional minimization problems. 

Both the finite and the infinite dimensional versions will be referred 

to as the modified conjugate gradient method (MCG). Explanation of the 

method is most lucid in terms of a finite-dimensional minimization. 
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Application of the method to optimal control problems follows with only 

minor alterations to the algorithm. 

The penalty function approach to constrained problems involves 

adding to the objective function fu") some positive measure of the 

constraint violation, for example 

f WT (7-1) 

where X is an A-vector of independent variables. 

"V - jQ. 2 

is the constraint violation for X "X^j 

n = o (v-3) 

is a set of p constraint equations, and W is a p^p positive definite 

matrix of penalty constants. A solution method that attempts to minimize 

A 
the function f requires the choice of values for the penalty constants in 

W. As pointed out in Chapter III, the choice of W may be difficult due 

to the sensitivity of the method to the geometric properties of f. To 

avoid this problem, one might consider the classical Lagrangian function 

defined as 

f = f ^ (-%) (V-4) 

where ̂ is a p-vector of constant Lagrange multipliers. The appearance 

of V-4 is similar to V-1 since when x does not satisfy the constraint 

. However the mathematical differences are significant. 

Although Thrasher (71) has shown a relation between Lagrange multipliers 

and penalty constants for certain problems involving control variable 

inequality constraints, in general the penalty constants can seldom be 

related to Lagrange multipliers. The expression Q(x) appears in the 
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Lagrangian f instead of an arbitrary positive measure of f, the constraint 

violation. The classical approach regards ̂  as p additional unknowns and 

uses the constraint Equation V-3 to provide p additional equations. The 

values of y. minimizing -f subject to Q.ix*)=o are among the zeroes of 

the system 

Precise values of the components of A are obtained as by-products in the 

solution of this system. Although the zeroes of V-5 and V-6 may not be 

unique, the^ corresponding to the solution point x* is unique. Thus 

from a computational point of view, it might be advantageous to consider 

the application of a CG method to the Lagrangian f in perference to the 

function -f which involves the arbitrary penalty constants in W. 

Forsythe (27) points out that care must be taken in attempting to 

apply a direct descent technique such as steepest descent or conjugate 

gradients to a Lagrangian function. Difficulties can result from the 

fact that the vector X* that minimizes f subject to the constraints 

Qi.'t)~o may lie at a stationary point of the Lagrangian i which is 

neither a relative maximum nor minimum in the n-dimensional space. That 

is, at the constrained minimum, the following relationship may not hold 

Stated in still another way, the matrix of second partial derivatives 

(V-5) 

(V-6) 

(V-7) 

•fs; 
S>- may not be sign definite. In that case, a descent 
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method could have difficulty locating the constrained minimum. Forsythe 

(27) and Arrow and Solow (2) point out however, that if Bis positive 

definite for all vectors X satisfying the linearized constraint condi­

tions 

à % 
I  X-  -  g  ,  

the constrained minimum represents a relative minimum in the cn-p)-

dimensional space given by the intersection of the p constraint equations 

Q.(.t)= O . Therefore, a descent technique avoids the difficulty of seeking 

inflection points if the search is carried out within the constraint 

space. This situation is roughly analogous to that which would be 

obtained if the constraint equations could be solved explicitly for p 

of the independent variables. Substitution of these relations into the 

unconstrained objective function would result in a function of n-p 

variables to be minimized without side constraints. 

Searching within the constraint space is attempted in the projection 

methods by projecting the search directions onto the support hyperplane 

to the constraint space, searching along this projected direction of 

search and finally correcting any constraint violations that occur as a 

result of the 'curvature' of the constraint due to its nonlinearity. 

Since the projection and correction relations are based on lineariza­

tion, stepsizes must be restricted to preserve their validity. As 

pointed out in Chapter IV, any method such as the conjugate gradient 

method that often seeks to take large stepsizes is in basic conflict 

with the philosophy of the projection methods for problems with 

insufficient linearity. 
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A method of adapting the CG method is sought which avoids the 

necessity of choosing arbitrary weighting or penalty constraints, which 

searches entirely within the constraint space, and which is not restricted 

to small stepsizes for nonlinear problems. The algorithm given by 

Equations II-2-II-9 in Chapter II will be applied formally to the 

Lagrangian V-4 which is considered to be a function of the components of 

X only. The p components of ̂  are parameters that are computed at the 

point in the algorithm where a one-dimensional minimization is done in 

the unconstrained version. Specifically the MCG algorithm is stated as 

follows: 

1. For i- o , guess an initial state vector 

2. Calculate the gradient vector a+ %. 

(V-9) 

3. Calculate the parameter using Equation 11-30 

(V-10) 

(V-11) 

for L - o , ^ o 

Note that W, ) is given by a quadratic function in the 

p parameters 

4. Calculate the direction of search 

(V-12) 

5. Solve the system 
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(V-13) 

1 = g (V-14) 

for (X- and ^, . 

The system given by V-13 and V-14 replaces the one-dimensional 

minimization. Solution of the system however, demands that 

the new vector lie within the constraint space and also 

represent a stationary point of f with respect to 

6. Increase i and repeat from step 2 until the constrained minimum 

is reached. 

Steps 2, 3 and 4 are done algebraically before numerical implemen­

tation of the process. The result is that after choosing an initial 

guess for system V-13 is solved immediately. Once the «x- and 

are determined, SjA,) is calculated and stored for use as the previous 

direction of search. The algebraic relations used in V-11, and V-12, 

and V-13 are problem dependent. Once they are determined by the user, 

they are invariant throughout the automated process. Solution of system 

V-13 will be called the 'inner loop* of the MCG method. In general, the 

inner loop is a -dimensional system of nonlinear equations and 

requires the use of a numerical solution technique applicable to that 

class of problems. In the examples given in this chapter, the 

unconstrained SCG method has been used to minimize -t -0- and thus 

to satisfy Equations V-13 and V-14. It should be stressed however, that 

the CG method need not be used in the inner loop to preserve the 

conjugate gradient formulae used in the derivation. In fact, in solving 
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the Equations V-13 and V-14, the user is free to exploit any 

peculiarities of the system that result from the specific problem 

being considered. For example, Pierson (59) shows by numerical in­

vestigation that shorter run times result from using Davidon's method 

instead of the CG method when the number of independent variables is 

'small'. For most applications, the number of constraints p will be 

small. Once the values of c<- and Ai are obtained, the new search point 

"X is obtained from the relation . The inner loop is 

then re-entered to determine the next stepsize «• and the new values 

of It can be seen that computationally the outer loop consists only 

of computing and storing the direction of search and computing the 

search points. Thus the procedure results in a sequence of inner loop 

solutions of Equations V-13 and V-14. This is similar to the penalty 

function method except that no arbitrary constants must be chosen and the 

system to be solved is )-dimensional instead of A-dimensional. 

In any conjugate gradient algorithm, setting the parameter equal 

to zero for all i results in the optimum steepest descent method. 

Similarly, if is zero for all I, the MCG method looks like a modified 

steepest descent method (MSD). Mclntyre (53) discusses a very similar 

modification to steepest descent which permits constraints between the 

independent variables. The primary difference is that each search point 

in Mclntyre's method satisfies a linearlized approximation of the 

constraint conditions whereas the MSD method presented here guarantees 

that each search point satisfies the original nonlinear constraint 

conditions exactly. Although linearization of the constraint permits the 
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derivation of an explicit formula for the Lagrange multipliers (see 

Equation 2.2.52, 53, p. 23); the expression is an approximation which 

is valid only when stepsizes are taken that are small enough to preserve 

the accuracy of the linearized constraint equations. This restriction 

on stepsize does not exist in the MSD method or the MCG method. What is 

required however is the existence and uniqueness of the solution to 

Equations V-13 and V-14. Since the form of the system is problem 

dependent, the satisfaction of these conditions will be assumed for all 

values of t in E^. 

Mclntyre also gives a modification to the second order Newton's 

method that is applicable to the Lagrangian function. Linearization of 

the constraint equations is again necessary. However, it seems reasonable 

to expect that the MCG method given previously might provide convergence 

rates lying between those shown by the first and second order methods 

discussed by Mclntyre. 

When the MSD method ( e>^--o ) is considered, the directions of 

search chosen are the negative gradients to the Lagrangian f given by 

V-4. Since the method guarantees the satisfaction of the constraint at 

n' 
every step of the iteration, a decrease in the value of i produced by a 

step in the direction of its negative gradient represents the same 

decrease in the function f regardless of the values of the Lagrange 

multipliers. Therefore it can be argued that the MSD method produces a 

monotonie decrease in the function f while causing the constraints 

/]to be satisfied by each iterate. 

The previous argument is not valid for the MCG algorithm in which 
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j3 0 , i >0 since the directions of search are no longer the negative 

gradients of f and do involve the values of the Lagrange multipliers 

Unfortunately a proof of the conjugacy of the directions of search in the 

In-p")- dimensional constraint space has not yet been produced. It is 

therefore theoretically undetermined whether the formal application of 

the CG formulae for determining the directions of search will produce 

more rapid convergence than the use of the MSD formulae using V i. . 

Two finite-dimensional numerical solutions are presented to 

illustrate the MCG method and its convergence properties. The objective 

of the first is to find the coordinates on a parabola that minimize the 

distance to the point (l,o) in the -x-y plane, i.e. 

P-9. Minimize 

f ^ (V-15) 

subject to 

n. -- - 4% c O . (V-16) 

The Lagrangian is then 

f -- 4x) . (v-17) 

Solution by the classical method of Lagrange multipliers gives 

V-
X - O 

= o 

The numerical solution given by the MCG method is presented in Table 14. 

The starting point was chosen as %= -o.5 , o and does not satisfy 

the parabolic constraint. In the solution, each point after the 

initial point satisfied the constraints to within the limits set for 
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Table 14. Solution of problem P-9 using the MCG method 

Iteration 

Number I 

0 -0.5 1.0 

1 .03124 0.3535 -.5756 0.7617 

2 -.1074x10"^ -.4472x10"^ -.5129 0.8193 

3 .5664x10"^ -.8091x10"^ -.5000 0.8191 

4 .1514x10"^ -.2648x10"^ -.500C 0.8191 

5 -.4632x10'^ -.4791x10'^ -.5000 0.8191 

solution of the inner loop equations. 

Another example with higher dimensionality is given here for the 

purpose of comparing the MCG and the MSD methods. The objective is to 

find the point on a cylindrical surface that lies the minimum distance 

from a fixed point 7.= | 3 , Z -- 2. , i.e. 

P-lOo Minimize 

f = I (V-18) 

subject to 

/I -2 (TC--i- - 4 - o . (V-19) 

Solution by the classical method of Lagrange multipliers gives 

7.* -- 1 

-- Z 
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Table 15 gives the MCG solution of the problem. The initial point in 

the search was X-,z , 'j-S , 2=7 which is not on the constraint. 

The same problem was solved with the MSD algorithm by letting 

^•=0 . The comparison of the methods is given in Table 16. The 

quantity ||e,is defined by 

4- (V-20) 

Although more extensive theoretical and computational investigation is 

necessary to establish the effect of using the CG equations formally to 

determine the directions of search in the manner indicated, the results of 

this finite-dimensional example suggest that the MCG method could provide 

more rapid convergence rates than the MSD method. It should be noted 

that if the MCG method produces a that causes the function value to 

increase along any direction of search, the problem can be corrected by 

setting equal to zero as is done in the standard conjugate gradient 

methods for unconstrained problems. This procedure makes the direction of 

search correspond to the negative gradient of the Lagrangian and thus a 

reduction in both f and I is guaranteed. Limited computational experience 

with the finite-dimensional algorithm has not yet produced an 'uphill' 

direction of search using the MCG method. Problem P-10 was also solved 

by using penalty functions and a sequence of unconstrained subproblems. 

The results of both the MCG and the SUM! solution are given in Table 17. 

Application of the Method to Constrained 

Optimal Control Problems 

The extension of the modified conjugate gradient method to function 

space and thus its applicability to optimal control problems is now 
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Table 15, Solution of problem P-10 using the MCG method 

Iteration 

Number i y. 

0 2.0 5.0 7.0 

1 0.8442 1.9939 2.3783 0.2504 

2 1.0378 1.9996 2.0312 0.4925 

3 0.9992 2.0000 2.0016 0.5001 

4 1.0002 2.0000 2.0003 0.5000 

5 1.0000 2.0000 2.0000 0.5000 

Table 16. Comparison of the MCG and MSD methods on problem P-10 

MCG MSD 

Iteration z ,, ii 2 

Number l ^ || | l̂| 

0 

1 5.54x10"^ 5.54x10'^ 

2 4.45x10^^ 3.02x10'^ 

3 1.89x10'^ 1.21x10"'^ 

4 8.13x10"^ 5.11x10"^ 

5 1.36x10'^ 2.10x10"^ 

6 
-11 

8.29x10 8.63x10"^ 

7 « 3.69x10"^^ 
-10 

3.55x10 

8 7.68x10"^^ 1.46x10"^^ 
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Table 17, Comparison of MCG and SUMT solutions of problem P-10 

MCG Penalty function-SlMT 

Iteration 

Number 

Subproblem 

Number leap 

0 0 

1 5.54x10'^ 1 3.15x10"^ 

2 4.45x10 ̂  2 1.93x10"^ 

3 1,89x10"^ 3 3,36x10'^ 

4 8,127x10'^ 4 9,70x10'^° 

5 1.36x10"^ 5 2.49x10"^^ 

6 8,29x10"^^ 6 
• -12 

1.46x10 

7 3.59x10"^^ 7 1.07x10"^^ 

8 7.68x10'^^ 8 1.46x10"^^ 

Execution Time 1.17 sec. 1.06 sec. 

presented. The problem statement below is in Mayer form to simplify the 

algorithm developed subsequently. We wish to use the MCG method to 

minimize 

T - (V-21) 

subject to 

i -- t ^ , t 1 (V-22) 

% ( t J = (V-23) 

and 
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jQ ( % = O . (V-24) 

where Q is a p-vector of terminal state constraints relations and 

is fixed. Let 

T - 6 (.I 1 =• (V-25) 

where ̂ is a p-vector of constant Lagrange multipliers. Minimizing 

while satisfying V-21-V-24 also minimizes subject to the same 

constraints. As shown in Chapter II, the gradient ^ to the functional 

T is given by 

cj- % = s 

where U is the Hamiltonian and xu") is the vector of adjoint or costate 

variables satisfying 

h - - ^ ^ (V-27) 

=- ^ . (v-28) 

The MCG algorithm for this control problem is the following: 

1. Choose an initial control function ^ ̂ it") 

2. Integrate the state system V-22, V-23 forward from t, to ^ 

3. Calculate the transition matrix for the linear 

homogeneous system V-27. Since the boundary conditions for 

V-27 are given at let x- -1 and write V-27 as 

The transition matrix for the above is computed 
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from (see 3, pp. 127-128) 

i -  ̂̂'C - = 1 . (V-30) 

The solution of V-27 can then be written in terms of the 

unknown A. as 

4. Determine the gradient from 

% ̂ (V-31) 

û̂ . U; vL, 1 -- ^ U,-t, 

5. Determine from 

%Lit ; 

(V-32) 

Pi. ) = 

6. Determine the new control in terms of ̂  and ^- as 

(V-33) 

^ ( t , 0(1 = lAl + "(L 

Solve the 'inner loop* equations 

^ (XùH = o 

-%L + k (V-34) 

(V-35) 

(V-36) 

for cx; and where results from integrating the 

state equations, V-22 and initial conditions V-23. When ^• 

and are known numerically, is a known function 

of time. 

8. Repeat from step 2 until the constrained minimum is reached. 

Steps 3, 4, 5 and 6 are, to a large extent, executed analytically 

the problem is cast into the proper form for the algorithm. For 
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example, an analytic expression for can be written in terms of 

the unknown ̂  and the elements of From this, the analytic expression 

Similarly the expression for j3(^) can be written as a quadratic expression 

in the elements of The coefficients of the expression are quadrature 

integrals involving known functions of time. Note that the denominator 

of V-33 involves no unknown quantities and is in fact already calculated 

from the previous /S calculation. Finally, an expression for in 

terms of the elements of the quadrature integrals from the (3 expression, 

and the unknowns «..^and is derived. After the integration of V-30 to 

determine the transition matrix and the evaluation of the quadrature 

terms arising from V-33, the new control becomes a function of o; •and 

only. The inner loop solution must then be accomplished. 

Many methods of solving the inner loop Equations V-35 and V-36 

require minimizing an expression of the form 

where K. is some positive constant. If the method chosen requires first 

derivative information, then expressions for the quantities 

for is determined for the particular problem being solved. 

as well as ^ must be derived. Here represents the 

component of the iterate of  A .  To obtain these quantities, the 

as well as 

following expressions can be derived: 

(V-37) 
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C> O' l à ̂  I 
+ "ào( (V-38) 

èll 
ij 

1Î 
à'I iX; àX; J 

6%Lfl à J è c< i. 

r- \z.,- p 

(V-39) 

However and ^ , can be obtained by using first order 

perturbation analyses on Equations V-22. For example, 

^ X 

but 

ĉ?( • 
^ "A 

"àotc ^ 

' * h . 

Interchanging the order of differentiation in V-40 gives 

"àx,-

ci't  ̂(X ̂ 
^ . iiJ 

' 
T^Uv 

Since the initial conditions on x  are fixed, 

i-n 
^ c<t 

It,") - o 

(v-40) 

(V-41) 

(V-42) 

(V-43) 

represent the proper initial conditions for the system. Similar analyses 

lead to the following equations in which iteration subscripts have been 

dropped to simplify notation: 

(V-44) cl 
dt 

f XÂ  ̂  ̂  ̂  ̂̂Ĵ b. 
r *> s •- p 
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ï-1  ̂ il ̂  

^ i ^Wtr àii 

-r "Ẑ u. "S . : (V-45) 

iî l -- % (T/ * ^ + $ 4' (V-46) 

The initial conditions are ail zero for these perturbation equations. 

Birta and Trushel (8) comment that the 'analytic gradient' approach used 

above may be less satisfactory than a determination of the needed partial 

derivatives by a finite difference method. He states that the perturba­

tion equations can, under certain circumstances, become 'ill-conditioned' 

making accurate numerical integration of them difficult. Insufficient 

computational experience was gained in this study to allow comment on that 

point. However, the determination of the inner Loop gradient components 

involves considerable computing effort whether the needed partials 

derivatives are calculated using the perturbation equations or by repeated 

integration of the states equations V-22. Since the inner loop is tra­

versed so frequently in the computation procedure, improved computing 

efficiency demands great care in choosing the method of solution of 

Equations V-35 and V-36. For example, numerical minimization methods 

which require only function evaluations might prove to be more efficient 

than gradient methods. However, the purpose here is not to suggest a 

method to solve the inner loop, but to present the MCG logic which does 
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not depend upon the inner loop algorithm. 

Step 3 of the MCG algorithm for the optimal control problem requires 

the calculation of an n. yn dimensional transition matrix. This is not 

unlike the projection method of Sinnott and Luenberger (69), The 

projection method requires the solution of the matrix equation Q " - Q 

where Q is an nxp matrix defined by Q- A . $ is the transi­

tion matrix for the linearized system equations and is an u X p 

matrix of constants. In addition another matrix differential 

equation must be solved and a p>.p matrix inverted each time a 

projection or correction is made from a new point in the control space. 

If several small corrections are made to improve the performance of the 

method, these calculations must be repeated several times for each 

forward step. The same comments can be made of course regarding the 

projection method when used with steepest descent. By comparison then, 

the calculation of a transition-matrix once for each step of the MCG 

method does not represent excessive computational effort. 

The adjoint system given by Equations V-27 and V-28 is, in general, 

a linear time-varying system since the matrix ^ is evaluated using the 

current control. The appearance of the transition matrix for that 

system does not represent an approximation. This is in contrast to 

the projection methods that make use of the transition matrix of the 

approximate linearized state equations. 

To demonstrate the application of the method to an optimal control 

problem, the MCG solution of the unit mass problem P-7 stated in Chapter 

IV is presented here. Appendix B contains a summary of the equations used 

to implement the MCG algorithm for this problem. The simplicity of the 
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problem made it unnecessary to perform a numerical computation of the 

transition matrix for the adjoint system. The results of the MCG 

solution are given in Table 18. The problem admits an analytic solution 

which is also presented in Table 18 for comparison purposes. Convergence 

to the optimal control is virtually complete after one iteration. How­

ever the value of the Lagrange multiplier is not accurate until after a 

second iteration is completed. The first solution of the inner loop was 

accomplished in three steps from an initial guess of a.-.\.o , ^i=o. The 

second inner loop solution used only one step and was started from the 

values of a. and obtained from the first solution. 

The first stepsize chosen by the MCG method was 0.5000 and the 

stepsize used by the projection method in solving the problem in one 

step was 0.4988, Since both methods give excellent representations of 

the optimal control after one step, the first direction of search chosen 

by the MCG method is very nearly the same as that chosen by the projection 

method. This is an expected result for a problem with linear dynamics 

and linear constraints. If however, the MCG and projection methods were 

applied to a nonlinear problem, the directions of search would not be 

explected to be the same. Geometrically, the projection method chooses 

a direction of search that lies in linear surface which is tangent to the 

constraint at the current search point in the control space. On a non­

linear problem, a step in this plane produces constraint violation. In 

contrast, the MCG method produces only those controls that satisfy the 

constraints. Its directions of search therefore would not lie in linear 

surfaces that are tangent to the constraint in the control space. 
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Table 18. Solution of problem P-7 using the MCG method 

Time 

(sec.) ^0 U, u. % a* 

0 50 18.6115 18.6114 18.6112 

0.1 45 17.5030 17.5028 17.5027 

0,2 40 16.2778 16.2777 16.2776 

0.3 35 14,9238 14.9237 14.9236 

0.4 30 13.4274 13.4273 13.4272 

0.5 25 11.7737 11.7736 11.7735 

0.6 20 9.9460 9.9459 9.9458 

0.7 15 7.9260 7.9260 7.9260 

0.8 10 5.6937 5.6937 5.6936 

0.9 5 3.2266 3.2266 3.2266 

1.0 0 0.50000 0.50000 0,50000 

5,0000 X, (0=5.0000 •x*ift=5.0000 

0.50000 oc -.50000 

yL-- -0.00374 -58.3034 -58.3031 
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CHAPTER VI. COMPARATIVE DISCUSSION AND 

RECOMMENDATIONS FOR ADDITIONAL INVESTIGATION 

The purpose of this study has been to identify and investigate the 

theoretical and computational characteristics of various adaptations of 

the conjugate gradient method to optimal control problems with terminal 

state constraints. Three such adaptations have been discussed. The 

penalty function technique and the projection technique have been 

suggested by others and refined or extended here, whereas the modified 

conjugate gradient method is original to this study. 

Comparative results that are not presented elsewhere in the 

dissertation are given here. The Van der Pol problem P-6 with linear 

constraints has been solved in this thesis using both the penalty function-

SUMT approach and the projection method. The results are given in 

Chapters III and IV. The execution times required for the solutions were 

30.1 seconds and 37.8 seconds for the penalty function and the projection 

methods, respectively. The penalty function run was made after several 

previous solutions to the problem had given some insight into the choice 

of the penalty constants. Other choices could produce significantly 

longer or perhaps even shorter execution times. 

The linear unit mass problem P-7 given in Chapters IV and V offers 

another comparative result. The projection method solved the problem in 

one iteration and 2.0 seconds of execution time. The MCG method solved 

the problem to the same degree of accuracy in one iteration and 13.9 

seconds of execution time. This comparison is not particularly informa­

tive however, since the example problem is in different respects an 
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advantageous choice for both methods. A more accurate comparison of these 

two methods must await the solution of a more challenging problem using 

the MCG method and the further refinement of that technique. 

Other comparisons of computational techniques and algorithm varia­

tions have already been reported in the chapters concerning the particular 

methods. These include a comparison of the PCG and the SCG methods in 

Chapter II, a comparison of the Lagrange and Bolza formulation of the same 

problem in Chapter II, a comparison of the SUMT and fixed penalty constant 

approaches in Chapter III, a comparison of the MSD and MCG method for 

finite-dimensional problems in Chapter V, and a comparison of the MCG 

and the SUMT methods in Chapter V. 

With regard to the ease of implementation, the penalty function 

approach has the advantage of programming simplicity. The method works 

well for problems with a small number of constraints and in those cases 

where acceptable penalty constants can be chosen from a wide range of 

positive constants. The projection method is theoretically more 

sophisticated and requires more programming effort. Because of the 

conflict between the large stepsizes chosen by the conjugate gradient 

method and the small stepsizes required by the linear theory used in the 

projection equations, a reasonably sophisticated stepsize adjustment 

policy must be implemented. Limited computational experience suggests 

that relaxation of the linearity requirements in favor of larger step-

sizes results in more rapid convergence. The allowable constraint 

violation for each step of the projection method must be set arbitrarily 

by the user. The algorithm works most efficiently when the acceptable 

constraint satisfaction is achieved on approximately the same iteration 



www.manaraa.com

102 

as the minimum of the functional. It is usually impossible to preset the 

allowable constraint violations properly. For this reason, the projection 

method like the penalty function method often requires several trial 

solutions before an efficient solution is obtained. The MCG method is the 

most difficult of the three methods to implement. It requires the user 

to derive several algebraic relationships that are necessary for the inner 

loop structure. The effort required depends to large extent upon the 

method chosen to solve the inner loop equations. However, once the 

implentation is complete, these are no arbitrary parameters that must be 

adjusted on the basis of experience. Each control iterate satisfies the 

constraints, and each stepsize chosen is used without adjustment. The 

method does require an initial guess of the values of the first step-

size and the first approximation to the Lagrange multipliers if a direct 

method of minimization is used in the inner loop. 

Additional research on the topic of this dissertation could include 

a more detailed and conclusive comparison of the operating efficiencies of 

the three methods investigated here. Such a study requires the existence 

of software that has been developed to a reasonably efficient state. 

This software has evolved during this study and is now available. 

Apart from comparative studies, additional research on the adapta­

tion of the conjugate gradient methods to constrained problems could 

pursue one of several alternatives. The MCG method is in an embryonic 

state of development. A theoretical demonstration of the conjugacy of 

the direction of search within the constraint space would be a major 

contribution. Numerical solutions of more difficult problems are needed 
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to evaluate the method's performance. Techniques for solving the inner 

loop nonlinear algebraic system should be explored since the efficiency 

of the method relies heavily upon the efficiency of the inner loop 

calculations. 

Applications of CG methods to control problems having variable 

endtimes, multiple control variables, control variable inequality 

constraints, or inequality constraints involving the state variables at 

times other than the final time have been limited. The superiority of 

the GG methods to the ordinary gradient methods on problems to which both 

apply is sufficient to encourage further attempts to adapt the conjugate 

gradient technique to a class of problems with greater generality than 

has been considered here. 
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APPENDIX A. DERIVATION OF THE AUXILIARY EQUATIONS' FOR THE 

PCG METHOD IN FUNCTION SPACE 

In order to apply the pure conjugate gradient method to optimal 

control problems a means of computing the quantity K1 must be 

derived, M is the analog of the expression M S;., which appears 

in Equation II-4 of the finite-dimensional algorithm. W is the Hessian 

matrix of the objective function for the finite-dimensional problem. 

ML'] is the analogous second-order operator in a Taylor's series expansion 

of the cost functional T for the function space problem. After N V'l 

is identified from the second-order expansion of J, certain auxiliary 

variables can be defined to aid in the computation of Ki . 

Consider the Bolza cost functional 

/

% 
FlTL, Là (A-1) 

where X is A-dimensional and u is •^-dimensional. Expanding TCu") about a 

nominal control gives 

AT - Tt.a) - 34_ -L 

M > (A-2) 

where all derivatives are evaluated along trajectories resulting from 

u(.0 and where i . Linearization of the state equations 

\ results in 
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\f 
^  l ' L 5 \ 6 ]  ,  ( A - 3 )  

"to 

and 

6% It") - J c| ( t^-f) Su (.T.\ dn; - 5 I , (A-4) 

to 

where represents the transition matrix for the linearized state 

equations. Equation A-2 may be rewritten as 

AT a TL5L^]) 

t -  <  ̂  ^ t  ( \  

z. (A-5) 

i ^ Y(&YL, !)' blSu.]) 

+ i < ) + t ^ ) 

Î 
(A-6) 

where 
^4 

S*L-1 -- (A-7) 

-t 

is the adjoint operator to 5L-J 

T » L . ] =  ( A - 8 )  

is the adjoint operator to T, i.e. 

(L| ^ Sli]) -ZL (.S'iç^T , % ) (A-9) 

and 

( I -- (,Tn(l, Î) (A-IO) 
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where ^ is an vi-vector of time functions, 

% is an m-vector of time functions, 

and I is an w-vector of constants. 

(See References 63,58). 

The second order terms in A-6 can be expressed in a single term 

if M&u is defined by 

M Su  ̂̂  ^ + S + 5' +- (A-11) 

With the operator Ki identified, N can be written as 

T - L \ 

_t.-  ̂
-vX -r i 

-:\u. _ 
t "to 

Tu/ 
t 

^ -c-. ^ 

% 

V-F 
+ ^L_\ . (A-12) 

Let 

then 

S-./XWC _ (A-13) 

=  J *  ̂  C t ) à i - , c l t  +  ̂  ( A - 1 4 )  

-to 

But from the properties of the transition matrix 

$ ^ ̂U,X) , (A-15) 
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so that 

4- ̂  5 L.( It") ̂  (A-16) 

or 

")f , 

'• %'i * % ̂'-' . 

Therefore, Equation A-12 may be written 

It.") - O 
(A-17) 

M" 

(A-18) 

Next define 

Then 

•VjU^ 

+ ât.^CtU^ . (A-19) 

t 

1 

•̂f  ̂
- S^L-t-W-x 

t 

cl 
at 

_ a'-F (A-20) 

Again using the properties of the transition matrix and an identity for 

the derivative of the inverse of a matrix we have 
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T 

= - ^ , (A-21) 

Therefore, 

"t t 

4-

t 

— ( A - 2 2 )  

or 

(A-23) 

From A-19, 

21^'^^'^= . (A-24) 

In summary, by combining Equations A-18 and A-19, we have 

W &L-\ It") " % 11̂  (̂ -25) 

where is obtained by a forward integration of the system 

îr^Uo^ -- O) (A-27) 
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and is obtained by a backward integration of the system 

j = - % ̂4 " ^ (A-28) 

The parameter is then obtained by the quotient of two quadratures: 

&• % ( ^ ^ ) (A-30) 
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APPENDIX B 

This appendix is a summary of the equations used to apply the MCG 

method to the unit mass control problem P-7 stated in Chapter IV, 

The gradient as a function of VL-is 

1^- (, -^0 ) = - ( i) ̂  * Z ui . (B-1) 

Equation B-1 can be used to determine as a function otA-. The 

resulting expression is 

A ( J = T ^ 7^ V 7; 1 (B-Z) 

where 

-T, = y L - 2 -̂ 13 àt (B-3) 

= -1 4 ze-' (B-4) 

=  - 1  -  - a J u .  ( B - 5 )  

/

I 

u-^ (. - U-^ dt (b-6) 
u 

The partial derivatives needed for the gradient in the inner loop are 

obtained by integrating the equations 

I - _ l(.o)^o (B-7) 

^ + f' 1 ^44^^ m 10^=0 (B-8) 
\o o 01 Vz^ivJ 1 -

^  -  ( 0 0 0 )  ^  n t < ' " ) = 0  ( B - 9 )  
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where 

J? - llilL (B-11) 

m - (B-12) 

â -X, 

^ z (B-13) 

^-<1" 

% l+i (B-14) 
•nT-

g •= 

and u - u ,_+ \ i. l) ef ' - ̂ - 2 ul 

+ 1^/7; ^ "^1 ^ "^3 ) ,— .1 (B-15) 

Terms involving e arise from the analytic solution of the adjoint 

equations 

\ = o J ^ (B-16) 

X^tn - -1 (B-17) 

'X 5 C - I (B-18) 


	1969
	Adaptations of the conjugate gradient method to optimal control problems with terminal state constraints
	John Kendall Willoughby
	Recommended Citation


	tmp.1412181364.pdf.BVDWz

